Prevent rheumatoid arthritis with healthy immune system and good oral hygiene
• Smoking cessation
• Early diagnosis
• Fish oil (n3 fat – mainly EPA and DHA together 6 to 8 g/day)
• Strengthen immune system for those genetically susceptible host with triggers like smoking, many infective agents esp P gingivalis can cause oral cavity infection.

Fish Oil

An 18-month study was published in 2014 that evaluated how borage seed oil — rich in GLA — and fish oil rich fared against each other in treating patients with rheumatoid arthritis. It was discovered that all three groups (one taking fish oil, one taking borage oil and one taking a combination of the two) “exhibited significant reductions” in disease activity, and no therapy outperformed the others. For all three, “meaningful clinical responses” were the same after nine months. (11)

This is great news for both fish and borage oil when it comes to arthritis patients, but it’s critical to emphasize that the results were the same because taking too many supplements is simply a waste of money.

Another study also showed that omega-3 fish oil supplements worked just as well as NSAIDs in reducing arthritic pain and are a safer alternative to NSAIDs.


Illustration of pathways of genetics, inflammation, and infectious links between rheumatoid arthritis and periodontal diseases.

Arthritis – rheumatoid Causes

The exact causes of rheumatoid arthritis are unknown. Rheumatoid arthritis is most likely triggered by a combination of factors, including an abnormal autoimmune response, genetic susceptibility, and some environmental or biologic trigger, such as a viral infection or hormonal changes.

The Immune Response and Inflammatory Process

The Normal Immune System Response. The inflammatory process is a byproduct of the activity of the body’s immune system, which fights infection and heals wounds and injuries:

• When an injury or an infection occurs, white blood cells are mobilized to rid the body of any foreign proteins, such as a virus.
• The masses of blood cells that gather at the injured or infected site produce factors to repair wounds, clot the blood, and fight any infections.
• In the process the surrounding area becomes inflamed and some healthy tissue is injured. The immune system is then called upon to repair wounds by clotting off any bleeding blood vessel and initiating fiber-like patches to the tissue.
• Under normal conditions, the immune system has other special factors that control and limit this inflammatory process.

The Infection Fighters

Two important components of the immune system that play a role in the inflammation associated with rheumatoid arthritis are B cells and T cells, both of which belong to a family of immune cells called lymphocytes.
If the T cell recognizes an antigen as “non-self,” it will produce chemicals (cytokines) that cause B cells to multiply and release many immune proteins (antibodies). These antibodies circulate widely in the bloodstream, recognizing the foreign particles and triggering inflammation in order to rid the body of the invasion.
For reasons that are still not completely understood, both the T cells and the B cells become overactive in patients with RA.
An antigen is a substance that can provoke an immune response. Typically antigens are substances not usually found in the body.

Genetic Factors

Genetic factors may play some role in RA either in terms of increasing susceptibility to developing the condition or by worsening the disease process but are clearly not the only important factors. The main genetic marker identified with rheumatoid arthritis is HLA (human leukocyte antigen).
A number of HLA genetic forms called HLA-DRB1 and HLA-DR4 alleles are referred to as the RA-shared epitope because of their association with rheumatoid arthritis. These genetic factors do not cause RA, but they may make the disease more severe once it has developed. Genetic variations in the HLA region may also predict drug treatment response to etanercept and the disease-modifying anti-rheumatic drug methotrexate.

Environmental Triggers – Infections

Although many bacteria and viruses have been studied, no single organism has been proven to be the primary trigger for the autoimmune response and subsequent damaging inflammation. Higher than average levels of antibodies that react with the common intestinal bacteria E. coli have appeared in the synovial fluid of people with RA. Some researchers think they may stimulate the immune system to prolong RA once the disease has been triggered by some other initial infection. Other potential triggers include Mycoplasma, parvovirus B19, retroviruses, mycobacteria, and Epstein-Barr virus.

Gingivitis, Gum Health Linked to Heart and Prostate Disorders

By Jim English

Periodontal disease is a chronic inflammatory disorder that causes gum tissues to pull away from the teeth, allowing bacteria to accumulate and triggering an inflammatory reaction that leads to the loss of bone tissues and teeth. In addition to the misery associated with the loss of one’s teeth, new research shows a positive link between the onset of periodontal disease and other chronic inflammatory disorders, including diabetes, cardiovascular disease, prostatitis and rheumatoid arthritis.
Periodontitis occurs when bacteria gather and form a “biofilm” that coats tooth surfaces at or below the gum line. These bacteria emit toxins that cause the body to mount an inflammatory response that, in turn, begins to eat away at gum tissues, leading to gingivitis. Eventually, if the source of inflammation is not brought under control, the process can result in the destruction of supportive bone structures (alveolar bone) that play a critical role in anchoring teeth firmly in place. As these retaining tissues break down, once-firm teeth become loose, leading to increasing inflammation, loss of bone and eventually requiring extraction.
Inflamed, bleeding gums and loss of teeth are only part of the damage. Gum disease is essentially an open wound that allows bacteria and their toxins to enter the body.
Inflamed, bleeding gums and the loss of teeth, however, are only a part of the potential damage arising from periodontal disease. Gum disease is essentially an open wound that allows bacteria and their toxins to enter the body and cause widespread damage. Research has established that advanced periodontal disease contributes to atherosclerosis, heart attack, stroke and diabetes. Conversely, diabetes, osteoporosis and osteoarthritis have been shown to contribute to periodontal disease.

Gum Health and Periodontitis

While periodontitis is recognized as the most common form of chronic infection and inflammation in humans, the number of people in the United States afflicted with periodontitis turns out to be significantly higher than was originally believed. In a recent National Health and Nutrition Examination Survey (NHANES) study, a full-mouth, comprehensive periodontal examination of over 450 adults over the age of 35 was compared with the results of earlier studies that relied on only a partial-mouth periodontal examination. The recent study shows that the previous partial-mouth study methodology may have underestimated the true incidence of periodontal disease by up to 50 percent.(1)
According to Samuel Low, DDS, MS, president of the American Academy of Periodontology, “This study shows that periodontal disease is a bigger problem than we all thought. It is a call to action for anyone who cares about his or her oral health. Given what we know about the relationship between gum disease and other diseases, taking care of your oral health isn’t just about a pretty smile. It has bigger implications for overall health, and is therefore a more significant public health problem.”
How ‘Jailbreaking’ Bacteria can Trigger Heart Disease
A growing body of research now links gum disease with the onset of heart disease, caused when plaque-causing bacteria from the mouth enter into the bloodstream and increase the risk of heart attack. According to Professor Howard Jenkinson of the University of Bristol, England, oral bacteria can wreak havoc if they are not kept in check by regular brushing and flossing. “Poor dental hygiene can lead to bleeding gums, providing bacteria with an escape route into the bloodstream, where they can initiate blood clots leading to heart disease,” he said.(2)

Streptococcus bacteria commonly live in the mouth, confined within communities termed “biofilms” that are responsible for causing tooth plaque and gum disease. Researchers have now shown that once let loose in the bloodstream, Streptococcus bacteria can use a protein, called PadA, as a weapon to force platelets in the blood to bind together and form clots.
Inducing blood clots is a selfish trick used by bacteria, Jenkinson points out. “When the platelets clump together they completely encase the bacteria. This provides a protective cover not only from the immune system, but also from antibiotics that might be used to treat infection,” he said. “Unfortunately, as well as helping out the bacteria, platelet clumping can cause small blood clots, growths on the heart valves (endocarditis), or inflammation of blood vessels that can block the blood supply to the heart and brain.”
Professor Jenkinson said the research highlights a very important public health message. “People need to be aware that, as well as keeping a check on their diet, blood pressure, cholesterol and fitness levels, they also need to maintain good dental hygiene to minimize their risk of heart problems.”

Periodontal Disease Linked to Prostatitis

In addition to contributing to development of heart disease, researchers from Case Western Reserve University School of Dental Medicine recently reported that initial results from a small sample shows that inflammation from gum disease and prostate problems just might be linked. In their paper, published in the official journal of the American Academy of Periodontology, the researchers described how they compared two unique markers for inflammation: Prostate-Specific Antigen (PSA), which is widely used to measure inflammation levels in prostate disease, and Clinical Attachment Level (CAL) of the gums and teeth, an indicator of periodontitis.
A PSA blood level of 4.0 ng/ml in the blood can be a sign of inflammation or malignancy, and patients with healthy prostate glands have lower than 4.0 ng/ml levels. A CAL number greater than 2.7 mm indicates periodontitis.

Like periodontitis, prostatitis also produces high inflammation levels. “Subjects with both high CAL levels and moderate to severe prostatitis have higher levels of PSA or inflammation,” stated Nabil Bissada, chair of the department of periodontics in the dental school. Bissada added that this might explain why PSA levels can be high in prostatitis, but sometimes cannot be explained by what is happening in the prostate glands. “It is something outside the prostate gland that is causing an inflammatory reaction,” he said. Because periodontitis has been linked to heart disease, diabetes and rheumatoid arthritis, the researchers felt a link might exist to prostate disease.
Thirty-five men from a sample of 150 patients qualified for their study, funded by the department of periodontology at the dental school. The participants were selected from patients with mild to severe prostatitis, who had undergone needle biopsies and were found to have inflammation and in some patients, malignancies.
The participants were divided into two groups: those with high PSA levels for moderate or severe prostatitis or a malignancy, and those with PSA levels below 4 ng/ml. All had not had dental work done for at least three months and were given an examination to measure the gum health. Looking at the results, the researchers from the dental school and the department of urology and the Institute of Pathology at the hospital found those with the most severe form of the prostatitis also showed signs for periodontitis.(3)

Polyunsaturated Fatty Acids may Reduce Periodontitis

In an article in the November issue of the Journal of the American Dietetic Association, researchers from Harvard Medical School and Harvard School of Public Health report that dietary intake of polyunsaturated fatty acids (PUFAs) like fish oil, known to have anti-inflammatory properties, shows promise for the effective treatment and prevention of periodontitis.
In a study involving over 9,000 adults, researchers found that omega-3 fatty acid intake, particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were associated with reduced incidence of periodontitis. One of the study authors, Asghar Z. Naqvi commented, “To date, the treatment of periodontitis has primarily involved mechanical cleaning and local antibiotic application. Thus, a dietary therapy, if effective, might be a less expensive and safer method for the prevention and treatment of periodontitis.

Given the evidence indicating a role for omega-3 fatty acids in other chronic inflammatory conditions, it is possible that treating periodontitis with omega-3 fatty acids could have the added benefit of preventing other chronic diseases associated with inflammation, including stroke as well.”
In their paper the researchers reported an approximately 20 percent reduction in incidence of periodontitis in those consuming the highest amount of dietary DHA. The reduction correlated with EPA was smaller, while the correlation to LNA was not statistically significant. Foods that contain significant amounts of polyunsaturated fats include fatty fish like salmon, peanut butter and nuts.(4)

Periodontal health and systemic health

Given the increasing prevalence of periodontal disease and the growing body of research connecting periodontal health and systemic health, it is clearly essential to take steps to maintain healthy teeth and gums. According to Dr. Low, “Not only should you take good care of your periodontal health with daily tooth brushing and flossing, you should expect to get a comprehensive periodontal evaluation every year,” he advised. A dental professional, such as a periodontist, a specialist in the diagnosis, treatment and prevention of gum disease, will conduct the comprehensive exam to assess your periodontal disease status.
1. P. I. Eke, G. O. Thornton-Evans, L. Wei, W. S. Borgnakke, B. A. Dye. Accuracy of NHANES Periodontal Examination Protocols. Journal of Dental Research, 2010.
2. Society for General Microbiology (2010, September 5). ‘Jailbreak’ bacteria can trigger heart disease.
3. Joshi et al. Association Between Periodontal Disease and Prostate Specific Antigen Levels in Chronic Prostatitis Patients. Journal of Periodontology, 2010.
4. Asghar Z. Naqvi, Catherine Buettner, Russell S. Phillips, Roger B. Davis, Kenneth J. Mukamal. Omega-3 Fatty Acids and Periodontitis in US Adults. Journal of the American Dietetic Association, 2010; 110.

Obesity and rheumatic diseases

Abstract: A large body of evidence from clinical and experimental studies is aiding to understand the close relationships between obesity and rheumatic diseases. For instance, it is generally accepted that obesity contributes to the development of osteoarthritis by increasing mechanical load of the joints, at least in weight bearing joints. However, besides mechanical effects, recent studies demonstrated that white adipose tissue is able to secrete a plethora of soluble factors, called adipokines, which have a critical role in the development and progression of some rheumatic diseases such as osteoarthritis and rheumatoid arthritis. In this article, we summarize the recent findings on the interaction of certain adipokines with the two most common rheumatic diseases: osteoarthritis and rheumatoid arthritis.


Up to the discovery of leptin in 1994 by Zhang et al. (1994), white adipose tissue (WAT) was considered only an energy storage tissue. In the recent years, WAT has been recognized to be a true endocrine organ, which is able to secrete a wide variety of factors termed adipokines (Hotamisligil et al., 1993; Fantuzzi, 2005). In addition to their metabolic activities recognized initially, these adipose-derived factors represent a new family of compounds that are also synthesized in other tissues, in addition to WAT, which could participate in several processes including inflammation and immunity (Otero et al., 2005; Tilg and Moschen, 2006; Lago et al., 2007).
Adipokines include a variety of pro-inflammatory factors with most of them being increased in obesity and appearing to contribute to the so-called “low-grade inflammatory state” in obese subjects. Inflammation in obesity is also closely related to a cluster of metabolic disorders including cardiovascular complications and autoimmune inflammatory diseases.
Apart from its metabolic activities, adipokines can be currently considered as key players of the complex network of soluble mediators involved in the pathophysiology of rheumatic diseases. Obesity, the condition that spurred the research on adipokines, has been considered a risk factor for developing osteoarthritis (OA) (Edwards et al., 2012; Vincent et al., 2012). It has been reported that obesity increases the incidence of OA, particularly in weight-bearing joints such as knees (Wluka et al., 2012), but the fact that obese subjects have an increased risk of OA in non-weight bearing joints such as hands (Yusuf et al., 2010; Grotle et al., 2008) reveals that soluble factors, adipokines indeed, are at play in the onset and progression of this rheumatic disease.
This review summarizes the current data concerning the involvement of certain adipokines in the two main rheumatic diseases, osteoarthritis and rheumatoid arthritis (RA).


Leptin is a 16 kDa non-glycosylated hormone that is encoded by the obese (ob) gene, the murine homolog of human LEP gene (Zhang et al., 1994). Leptin exerts its biological actions through the activation of its OB-Rb long-form receptor isoform that is encoded by the gene diabetes (db) and belongs to the class 1 cytokine receptor superfamily. It is mainly produced by adipocytes, and its circulating levels are correlated with WAT mass. Mutation in either ob gene or the gene encoding the leptin receptor (the diabetes, or db gene), results in severe obesity. This hormone decreases food intake and increases energy consumption by acting on specific hypothalamic nuclei, inducing anorexigenic factors such as cocaine amphetamine related transcript (CART) and suppressing orexigenic neuropeptides such as neuropeptide Y (Ahima et al., 1996). Leptin levels are mostly dependent on the amount of body fat, but its synthesis is also regulated by inflammatory mediators (Gualillo et al., 2000).

Leptin and Osteoarthritis

It is increasingly evident that this hormone plays a key role in the OA pathophysiology; in fact serum leptin levels are increased in OA patients (de Boer et al., 2012). Some initial findings have suggested an anabolic role of this hormone in the cartilage (Dumond et al., 2003). But most studies revealed a catabolic role of leptin at cartilage level. For instance, our group demonstrated for the first time that, in cultured human and murine chondrocytes, type 2 nitric oxide synthase (NOS2) is synergistically activated by the combination of leptin plus interferon-γ. Next, we demonstrated that NOS2 activation by interleukin-1β (IL-1β) is increased by leptin via a mechanism involving JAK2, PI3K, and mitogen activated kinases (MEK1 and p38) (Otero et al., 2003; 2005). Nitric oxide (NO), which is induced by a wide range of pro-inflammatory cytokines, is a well-known pro-inflammatory mediator on joint cartilage, where it triggers chondrocyte phenotype loss, apoptosis, and activation of metalloproteinases (MMPs).
Recently, it has been demonstrated that leptin is able to a lso induce the expression of MMPs involved in OA cartilage damage, such as MMP-9 and MMP-13 (Toussirot et al., 2007). In fact, conditioned media from osteoarthritic infrapatellar fat pad, containing leptin, induce the synthesis of certain MMPs (Hui et al., 2012), demonstrating that the local production of leptin participates in the degradation processes occurred in the joints. More lines of evidence suggested that leptin, alone and in combination with IL-1β, up-regulates MMP-1 and MMP-3 production in human OA cartilage through the transcription factor NF-κB (nuclear factor κB), protein kinase C, and MAP kinase pathways. This adipokine is also correlated positively to MMP-1 and MMP-3 in synovial fluid (SF) from OA patients (Koskinen et al., 2011b). Moreover, recently leptin has been demonstrated to increase IL-8 production in human chondrocytes (Gomez et al., 2011). Bao et al. (2010) have defined that leptin enhanced both gene and protein levels of catabolic factors such as MMP-2 and MMP-9, while down-regulated the anabolic factors such as basic fibroblast growth factor (bFGF) in articular cartilage of rats. Additionally, the gene expression of ADAMTS-4 and -5 were markedly increased and a depletion of proteoglycan in articular cartilage was observed after treatment with leptin.
More recently, our group demonstrated that leptin per se is also able to increase the expression of vascular cell adhesion molecule-1 (VCAM-1), a relevant adhesion molecule involved in the recruitment and extravasation of leukocytes from circulating blood to inflamed joints (Conde et al., 2012).
Leptin also could contribute to abnormal osteoblast function in OA. In fact, the elevated production of leptin in OA abnormal subchondral osteoblast is correlated with the increased levels of ALP (alkaline phosphatase), OC (osteocalcin), collagen type I, and TGF-β1 (transforming growth factor β1), inducing a dysregulation of osteoblast function (Mutabaruka et al., 2010).
Leptin and leptin’s receptor expression levels were significantly increased in advanced OA cartilage and in SF (Vuolteenaho et al., 2012). Moreover, a very recent study showed that leptin bioactive levels are increased in SF from obese OA patients and SOCS-3 (a typically leptin-induced signaling suppressor in the cell) expression in cartilage is decreased in these patients compared with non-obese OA patients (Vuolteenaho et al., 2012).
Ku et al. (2009) have demonstrated a relationship of SF leptin concentrations with the radiographic severity of OA, suggesting a role of leptin as an effective marker for OA.
These results suggested that leptin might act as a pro-inflammatory factor on cartilage metabolism and exert a catabolic effect on OA joints. In recent studies, comparing the incidence rates of knee osteoarthritis between ob/ob and db/db mice and controls, no significant differences have been detected (Griffin et al., 2009). This recent finding suggested that obesity, per se, is not a sufficient condition to induce knee OA, whereas leptin is necessary in the development and progression of OA associated with obesity.
In fact, most studies support the role of the adipokines as a non-mechanical link between obesity and OA. In patients with clinical knee osteoarthritis, Berry et al. (2011) have demonstrated that leptin was significantly associated with increased levels of the bone formation biomarkers, such as osteocalcin and PINP, and reduced cartilage volume loss. In the same way, baseline expression of leptin receptors was associated with reduced levels of the cartilage formation biomarkers PIIANP, with increased cartilage defects score, and with increased cartilage volume loss. All these results were independent of age, sex, and body mass index.

Figure 1. Schematic representation of the most relevant effects of leptin and adiponectin in osteoarthritis and rheumatoid arthritis.
However, in other recent published papers, no association between leptin levels and hand OA progression or severity has been demonstrated (Massengale et al., 2012; Yusuf et al., 2011). To note, some authors found a correlation between leptin serum concentration and the intensity of chronic hand OA pain (Massengale et al., 2012) (Figure 1).

Leptin and Rheumatoid Arthritis

Together with other neuroendocrine signals, leptin seems to play a role in autoimmune diseases such as RA, but whether leptin can harm or protect joint structures in RA is still unclear. In patients with RA, circulating leptin levels have been described as either higher or unmodified in comparison to healthy controls (Otero et al., 2006; Toussirot et al., 2007). In RA patients, a fasting-induced fall in circulating leptin is associated with CD4+ lymphocyte hyporeactivity and increased IL-4 secretion (Fraser et al., 1999). Experimental antigen-induced arthritis is less severe in leptin-deficient ob/ob mice than in wild-type mice, whereas leptin-deficient mice and leptin-receptor-deficient mice exhibited a delayed resolution of the inflammatory process in zymosan-induced experimental arthritis. Notably, leptin decreased the severity of septic arthritis in wild-type mice. So, in the light of the present results it seems difficult to make an unambiguous conclusion about a potential role of leptin in RA (Bernotiene et al., 2006). Several studies have also demonstrated that there may exist a close dependence between the risk of aggressive course of RA and leptin levels (Lee et al., 2007; Targonska-Stepniak et al., 2008). In addition, a correlation among serum leptin, synovial fluid/serum leptin ratio, disease duration, and parameters of RA activity has been reported (Olama et al., 2012).
It is relevant to mention that current biologic treatments for RA, such as anti-TNF (tumor necrosis factor) therapies, do not directly modulate leptin levels (Derdemezis et al., 2009; Gonzalez-Gay et al., 2009; Popa et al., 2009).
Also, it is important to note the relevance of leptin in vitro. Many studies demonstrated the effect of this adipokine in different cell types present in the joint. Apart from the prominent activity of leptin in chondrocytes, which was demonstrated by our group and others (Conde et al., 2012; Otero et al., 2003; 2005; 2007), leptin has more recently been shown to also exert a pro-inflammatory effect on synovial fibroblasts. Leptin induced IL-8 production in synovial fibroblasts via a mechanism involving a canonical activation of the leptin receptor and NF-κB (Tong et al., 2008). To note, this effect was also demonstrated by our group in human chondrocytes (Gomez et al., 2011).
The action of leptin in RA is not only targeted to articular tissue, this adipokine also exerts direct modulatory effects on activation, proliferation, maturation, and production of inflammatory mediators in a variety of immune cells, including lymphocytes, natural killer cells, monocytes/macrophages, dendritic cells, neutrophils, and eosinophils (Lam and Lu, 2007).
In particular, it is known that leptin is able to modulate regulatory T cells (Treg) that are potent suppressors of autoimmunity. Matarese and colleagues have recently demonstrated that leptin secreted by adipocytes sustains T helper 1 (Th1) immunity by promoting effector T cell proliferation and by constraining Treg cell expansion (De Rosa et al., 2007). Weight loss, with concomitant reduction in leptin levels, induces a reduction in effector T cell proliferation and an increased expansion of Treg cells, leading to a down-regulation of Th1 immunity and cell-mediated autoimmune diseases associated with increased susceptibility to infections. On the contrary, an increase in adipocyte mass leads to high leptin secretion, which results in expansion of effector T cells and reduction of Treg cells. This fact determines an overall enhancement of the pro-inflammatory immunity and of T cell-mediated autoimmune disorders. Though, leptin can be considered as a link among immune tolerance, metabolic function, and autoimmunity and future strategies aimed at interfering with leptin signaling may represent innovative therapeutic tools for autoimmune disorders.
Very recently it has been demonstrated that leptin can activate mammalian target of rapamycin (mTOR) and regulate the proliferative capacity of regulatory T cells. This study suggests that the leptin-mTOR signaling pathway is an important link between host energy status and Treg cell activity. Authors conclude that oscillating mTOR activity is necessary for Treg cell activation and suggest that this might explain why Treg cells are unresponsive to TCR stimulation in vitro when high levels of leptin and nutrients may sustain mTOR activation (Procaccini et al., 2010; De Rosa et al., 2007). To note, both direct and indirect effects of leptin on the immune system have been described to account for the immune defects observed in leptin- and leptin-receptor-deficient rodents. Actually, Palmer et al. (2006) have also shown an indirect effect of leptin on the immune system, demonstrating that leptin receptor deficiency affects the immune system indirectly via changes in the systemic environment (Figure 1).


Adiponectin, also known as GBP28, apM1, Acrp30, or AdipoQ, is a 244-residue protein that is produced mainly by WAT. Adiponectin has structural homology with collagens VIII and X and complement factor C1q, and it circulates in the blood in relatively large amounts in different molecular forms (Kadowaki and Yamauchi, 2005; Oh et al., 2007).
It increases fatty acid oxidation and reduces the synthesis of glucose in the liver. Ablation of the adiponectin gene has no dramatic effect on knockout mice on a normal diet, but when placed on a high fat/sucrose diet, they develop severe insulin resistance and exhibit lipid accumulation in muscles.
Circulating adiponectin levels tend to be low in morbidly obese patients and increase with weight loss (Kadowaki and Yamauchi, 2005; Oh et al., 2007).
Adiponectin acts via two receptors, one (AdipoR1) found predominantly in skeletal muscle and the other (AdipoR2) in liver. Transduction of the adiponectin signal by AdipoR1 and AdipoR2 involves the activation of AMPK, PPAR-α, PPAR-γ, and other signaling molecules (Kadowaki and Yamauchi, 2005).

Adiponectin and Osteoarthritis

Some findings indicate that adiponectin has a wide range of effects in pathologies involving inflammation, such as cardiovascular disease, endothelial dysfunction, type 2 diabetes, metabolic syndrome, and OA (Matsuzawa, 2006). In contrast to its previously described protective role in vascular diseases, there are some lines of evidence that show that adiponectin might act as a pro-inflammatory factor in joints, and it could be involved in matrix degradation.
Adiponectin-treated chondrocytes lead to the induction of NOS2, via a signaling pathway that involves PI3 kinase. Similarly, this adipokine also increases the production of IL-6, MMP-3, MMP-9, and MCP-1 in the same cell type (Lago et al., 2008). Recently, the induction of MMP-3 by adiponectin in chondrocytes was further confirmed, and it occurred, in part, through p38, AMPK, and NF-κB (Tong et al., 2011). In addition, Kang et al. (2010) have reported that collagenase-cleaved type II collagen neoepitope, a product of collagen type II degradation, was increased in supernatants of adiponectin-induced OA cartilage explants. Furthermore, it has been reported that adiponectin is able to induce the expression of IL-6 in human synovial fibroblasts (Tang et al., 2007).
Like leptin, adiponectin was recently described as a potent inductor of VCAM-1 in chondrocytes, even more than a classic pro-inflammatory cytokine as IL-1β. So, it is reasonable to describe a scenario in which this adipokine is able to perpetuate cartilage-degrading processes by inducing molecules responsible for monocyte and leukocyte infiltration to the joint.
In addition, the implication of adiponectin in OA pathogenesis is supported by clinical observations. It has been reported that plasma adiponectin levels were significantly higher in OA patients than in healthy controls (Laurberg et al., 2009). Actually, Filkova et al. (2009) found higher adiponectin serum levels in erosive OA patients compared with non-erosive OA patients. In the same way, Koskinen et al. (2011a) reported that serum adiponectin and adiponectin synthesis from OA cartilage are higher in patients with the radiologically most severe disease. Furthermore, these authors and others observed an association among adiponectin serum levels, OA biomarkers and local synovial inflammation (de Boer et al., 2012; Koskinen et al., 2011a). To note, adiponectin-leptin ratio was proposed as predictor of pain in OA patients (Gandhi et al., 2010), in fact this adipokine has been detected in OA synovial fluids correlating with aggrecan degradation (Hao et al., 2011).
Also, it is noteworthy that there was an increase in IL-6 and adiponectin production in infrapatellar fat pad (IFP) in knee osteoarthritis (Klein-Wieringa et al., 2011a; Ushiyama et al., 2003; Distel et al., 2009), showing that IFP could contribute to the local production of cytokines and adipokines. Taken together, these results suggest that adiponectin may be considered a potential molecule involved in joint disorders and matrix degradation.
However, the role of adiponectin in OA is controversial. There are some findings that show an inhibition of IL-1β-induced MMP-13 expression and up-regulation of tissue inhibitor of metallopreoteinase-2 (TIMP-2) mediated by adiponectin in chondrocytes (Chen et al., 2006). Moreover, in STR/Ort mice, an animal osteoarthritis model, the serum adiponectin levels are lower compared with control group (Uchida et al., 2009), suggesting a protective role for this adipokine in the development of the disease.
It is noteworthy that clinical data also support the fact that adiponectin could be a protective molecule against OA. A recent study revealed an inverse correlation between adiponectin and disease severity (Honsawek and Chayanupatkul, 2010). Moreover, it has been reported that patients with high adiponectin levels had a decreased risk for hand OA progression, suggesting that this adipokine may be a protective hormone against cartilage damage (Yusuf et al., 2011). Although, other recent studies showed that serum adiponectin levels were not associated with radiographic hand OA severity (Massengale et al., 2012) (Figure 1).

Adiponectin and Rheumatoid Arthritis

The potential role of adiponectin in rheumatoid arthritis has been actively investigated. Generally, low adiponectin levels have been associated with obesity, type 2 diabetes, atherosclerosis, and vessel inflammation. Moreover, in metabolic syndrome the role of adiponectin is clearly anti-inflammatory. On the other side, multiple studies described high adiponectin levels in patients with RA, and these levels correlate with severity of RA (Alkadi et al., 2011; Otero et al., 2006; Ebina et al., 2009). Several authors identified an association between serum adiponectin levels and radiographic damage in patients with RA (Klein-Wieringa et al., 2011b; Giles et al., 2009). These findings suggest that this adipokine may be a mediator of the paradoxical relationship between increasing adiposity and protection from radiographic damage in RA. In addition, other studies reveal that adiponectin is also related to erosive joint destruction in RA (Giles et al., 2011), and it has been described that this adipokine is associated with the pro-inflammatory cytokine IL-6 (Oranskiy et al., 2012; Ozgen et al., 2010).

At joint levels adiponectin might be pro-inflammatory

In contrast to its “protective” role against obesity and vascular diseases, at joint levels adiponectin might be pro-inflammatory. In synovial fibroblasts (SF), adiponectin induces IL-6 production and MMP-1, two of the main mediators of RA via the p38 MAPK pathway (Ehling et al., 2006). Similarly, IL-8 is induced by adiponectin through an intracellular pathway involving NF-κB (Gomez et al., 2011; Katano et al., 2009). In addition, adiponectin and IL-1β synergize in the induction of IL-6, IL-8, and prostaglandin E2 (PGE2) in RA synovial cells (Lee et al., 2012), suggesting that adiponectin and IL-1β may act synergistically in the induction of pro-inflammatory factors during RA progression.
Recent studies showed that adiponectin might also contribute to synovitis and joint destruction in RA by stimulating MMP-1, MMP-13, and vascular endothelial growth factor (VEGF) expression in synovial cells, surprisingly, more than conventional pro-inflammatory mediators (i.e., IL-1β) (Choi et al., 2009).

In addition, a study developed in RA synovial fibroblasts (RASFs) showed that adiponectin increases both cyclooxygenase-2 (COX-2) and membrane-associated PGE synthase-1 (mPGES-1) mRNA and protein expression, resulting in an increase in PGE2 production in a time and concentration-dependent manner (Kusunoki et al., 2010). This increase was inhibited by siRNA against adiponectin receptor (AdipoR1 and AdipoR2) or using inhibitors of specific proteins involved in adiponectin signal transduction (Kusunoki et al., 2010). Recently, Frommer et al. (2010) have confirmed the pro-inflammatory role of adiponectin in RA by demonstrating that this adipokine promotes inflammation through cytokine synthesis by the different cells present in the joint.

Also, it participates in the attraction of inflammatory cells to the synovium via chemokines synthesis and promoting matrix destruction due to the increased release of matrix metalloproteinases by chondrocytes. Moreover, the authors described that the different isoforms of adiponectin can induce the expression of different genes involved in the pathogenesis of RA (Frommer et al., 2012); these results suggest that adiponectin have detrimental effects in joint inflammatory diseases such as RA (Figure 1).

Other Adipokines in Osteoarthritis and Rheumatoid Arthritis – Chemerin

Chemerin, also known as tazarotene-induced gene 2 and retinoic acid receptor responder 2 (RARRES2), is a chemoattractant adipokine (Wittamer et al., 2003). It is secreted as an 18 kDa inactive proprotein and it is activated by posttranslational C-terminal cleavage (Wittamer et al., 2003). Chemerin acts via the G-coupled receptor chemokine-like receptor 1 (CMKLR1 or ChemR23) (Wittamer et al., 2003). Chemerin and its receptor are expressed mainly in adipose tissue (Bozaoglu et al., 2007), but also in, for instance, dendritic cells, and macrophages express chemerin receptor (Luangsay et al., 2009). ChemR23 is also expressed by endothelial cells, and it is up-regulated by pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 (Kaur et al., 2010).
Interestingly, chondrocytes express chemerin and its receptor (Berg et al., 2010; Conde et al., 2011), and IL-1β is able to increase chemerin expression (Conde et al., 2011). In the same way, Berg et al. (2010) have demonstrated that recombinant chemerin enhances the production of several pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8), as well as different MMPs (MMP-1, MMP-2, MMP-3, MMP-8, and MMP-13) in human articular chondrocytes. These factors play a role in the degradation of the extracellular matrix, by causing a breakdown of the collagen and aggrecan framework, and result in the irreversible destruction of the cartilage in OA and RA. Moreover, these authors reported that recombinant chemerin phosphorylates p42/44 MAPK and Akt.
To note, chemerin was detected in synovial fluid from OA and RA patients (Eisinger et al., 2012; Huang et al., 2012), and the serum concentration of this adipokine was correlated with the disease severity in OA (Huang et al., 2012). Moreover, it has been reported that chemerin enhances the production of IL-6 and MMP-3 in fibroblast-like synoviocytes (Kaneko et al., 2011), suggesting a role for chemerin in the pathogenesis of RA. In addition, this adipokine stimulates the synthesis of CCL2 and TLR4 (Eisinger et al., 2012), and the authors postulated that chemerin develops certain functions in the relationship between innate immunity and joint inflammation.
Lipocalin 2. Lipocalin 2 (LCN2), also termed siderocalin, 24p3, uterocalin, and neutrophil gelatinase-associated lipocalin (NGAL), is a 25 kDa glycoprotein isolated from neutrophil granules although white adipose tissue (WAT) is thought to be the main source (Triebel et al., 1992). The LCN2 protein has been isolated as a 25 kDa monomer, as a 46 kDa homodimer, and in a covalent complex with MMP-9, and its cellular receptor, megalin (GP330), was described (Devireddy et al., 2001). LCN2 is involved in apoptosis of hematopoietic cells (Devireddy et al., 2001), transport of fatty acids and iron (Chu et al., 1998), modulation of inflammation (Cowland and Borregaard, 1997), among other processes.
LCN2 has recently been identified in chondrocytes (Owen et al., 2008). In these cells IL-1β, leptin, adiponectin, LPS, and dexamethasone act as potent modulators of LCN2 expression (Conde et al., 2011). LCN2 is likely to be involved in matrix degradation since it forms molecular complexes with MMP-9 (Gupta et al., 2007).
Recently, the group of Katano confirmed that the level of NGAL in SF was significantly higher in patients with RA than in those with osteoarthritis. Through proteome analysis Katano et al. (2009) have showed that GM-CSF may contribute to the pathogenesis of RA by the up-regulation of LCN2 in neutrophils, followed by induction of Cathepsin D, transitional endoplasmic reticulum ATPase (TERA), and transglutaminase 2 (tg2) in synoviocytes. These enzymes may contribute to the proliferation of synovial cells and infiltration of inflammatory cells inside the synovium.


Vaspin is a serpin (serine protease inhibitor) that was produced in the visceral adipose tissue (Hida et al., 2005). Interestingly, administration of vaspin to obese mice improved glucose tolerance and insulin sensitivity and reversed altered expression of genes that might promote insulin resistance. The induction of vaspin by adipose tissue might constitute a compensatory mechanism in response to obesity and its inflammatory complications.
With regard to rheumatic diseases, serum vaspin concentrations were increased in RA patients compared to healthy controls (Ozgen et al., 2010). Moreover, synovial fluid vaspin levels were significantly higher in RA patients compared to OA patients (Senolt et al., 2010).
Apelin. Apelin is a bioactive peptide that was originally identified as the endogenous ligand of the orphan G protein- coupled receptor APJ (Tatemoto et al., 1998). TNF increases apelin productions in both adipose tissue and blood plasma when administered to mice (Daviaud et al., 2006).
Hu et al. (2010) have suggested that apelin may play a catabolic role in cartilage metabolism. Apelin stimulates the proliferation of chondrocytes and significantly increases the mRNA expression of the catabolic factors MMP-1, MMP-3, MMP-9, and IL-1β in vitro. Intra-articular injection with apelin in vivo up-regulates the expression of MMP-3, MMP-9, and IL-1β in articular cartilage. By contrast, apelin treatment decreases the level of collagen II in the same tissue. In addition, after treatment with apelin, mRNA levels of ADAMTS-4 and ADAMTS-5 in articular cartilage are markedly increased and depletion of proteoglycan in articular cartilage was found.
Also, the same group reported that serum apelin levels were higher in OA patients compared with healthy controls (Hu et al., 2011). Moreover, this adipokine was present in the synovial fluid of these patients and correlated positively with disease activity (Hu et al., 2011). These results indicate that apelin could contribute to the development of OA.
Omentin. Omentin is a protein of 40 kDa secreted by omental adipose tissue and highly abundant in human plasma that had previously been identified as intelectin, a new type of Ca2+-dependent lectin with affinity to galactofuranosyl residues (which are constituents of pathogens and dominant immunogens) (Schaffler et al., 2005). So, it was suggested that a biological function of omentin/intelectin was the specific recognition of pathogens and bacterial components, playing an important role in the innate immune response to parasite infection (Gerwick et al., 2007). Moreover, several studies have shown that omentin gene expression is altered by inflammatory states and obesity (de Souza Batista et al., 2007).
Senolt et al. (2010) have found reduced levels of omentin in the synovial fluid of patients with RA compared with those with OA. In addition, it has been demonstrated that synovial fluid omentin concentrations were negatively correlated with the severity of the OA (Li et al., 2012; Xu et al., 2012), suggesting that this adipokine could serve as a biomarker for reflecting the severity of the disease.

Molecules secreted by adipose tissue could affect the joint structures in rheumatic diseases

The study of adipokines opened a new perspective of how molecules secreted by adipose tissue could affect the joint structures in rheumatic diseases. The relationship between obesity and rheumatic diseases such as OA has been considered just by a higher mechanical stress. However, the discovery of these adipose-derived factors demonstrated a metabolic relationship too. In the last several years there have been many studies trying to identify new adipokines and their signaling pathways, as well as, their actions in the different joint tissues.
All of the knowledge about these proteins could aid the development of new pharmacological treatments, for instance, the use of specific antibodies in a similar way to anti-TNF-α therapy. Also, with the data presented in this review we could conclude that adipokines might serve as biomarkers of the severity of certain rheumatic diseases.
This area of research is ongoing and more future research studies will be necessary to clarify the specific functions of adipokines in rheumatic diseases.
The work of O.G. and F.L. is funded by Instituto de Salud Carlos III and Xunta de Galicia (SERGAS) through a research-staff stabilization contract. O.G. is supported by Instituto de Salud Carlos III and Xunta de Galicia (grants PI11/01073 and 10CSA918029PR). F.L. is supported by Instituto de Salud Carlos III [grants PI11/00497 and REDINSCOR (RD06/0003/0016)]. This work was also partially supported by the RETICS Program, RD08/0075 (RIER) via Instituto de Salud Carlos III (ISCIII), within the VI NP of R+D+I 2008-2011 (OG). J.C. is a recipient of a fellowship from the Foundation IDIS-Ramón Dominguez. M.S. is a recipient of the “FPU” Program of the Spanish Ministry of Education. R.G. is a recipient of the “Sara Borrell Program” of the Spanish National Institute of Health “Carlos III.” V.L. is a recipient of a grant from Xunta de Galicia.
Resources — The National Institute of Arthritis and Musculoskeletal and Skin Diseases — American College of Rheumatology — The Arthritis Foundation — FDA information on COX-2 inhibitors and NSAIDs — Find a clinical trial