scan risk taker

The study, which was conducted by Dr. Francesca Filbey, found that risk-taking teens have hyperconnectivity between the amygdala and areas of the prefrontal cortex associated with critical thinking skills and emotion regulation. The amygdala is responsible for emotional reactions. The nucleus accumbens and prefrontal cortex also showed increased activity, with the former often a point of study in addiction research.

What this all shows is that there’s a correlation between risk-takers and those whose minds are pre-conditioned to addiction.

Self-control systems: a common culprit

Another study from researchers at The University of Texas at Austin, UCLA, and elsewhere, found a link between risk-takers and their brains’ self-control systems. They used specialized software that examined brain regions prior to, and during, both a risky choice and a safe choice, in addition to a video game called Balloon Analogue Risk Task (BART), where participants can show their risk-taking tendencies by choosing to take a risk (by inflating a balloon further and earning money) or playing it safe (stop inflating the balloon and cashing out).

The balloon game is essentially a microcosm of other riskier choices, such as choosing to drink too much before driving home. With each additional drink consumed or additional air put into the balloon, there’s an increased risk of something unpleasant and potentially harmful occurring. The researchers used this concept to help study areas of the brain that are impacted when participants are confronted with a decision that involves risk.

Correlation between the brain and risk-taking

Identifying the link between risk-taking and one’s brain could open several possibilities that have the potential to improve our lives. “Our findings are crucial in that they help identify potential brain biomarkers that, when taken into context with behavioral differences, may help identify which adolescents are at risk for dangerous and pathological behaviors in the future,” says DeWitt.

Similarly, the study that utilized the Balloon Analogue Risk Task accommodates the analysis of risk-taking in a controlled environment with little variability, which suggests that studying the correlation between the brain and risk-taking will become even more useful for scientists as additional research methods, like BART, emerge.

With friends or group

It is well known that teenagers take risks — and that when they do, they like to have company. Teens are five times more likely to be in a car accident when in a group than when driving alone, and they are more likely to commit a crime in a group.

References

DeWitt SJ, Aslan S, & Filbey FM (2014). Adolescent risk-taking and resting state functional connectivity. Psychiatry research, 222 (3), 157-64 PMID: 24796655

Helfinstein SM, Schonberg T, Congdon E, Karlsgodt KH, Mumford JA, Sabb FW, Cannon TD, London ED, Bilder RM, & Poldrack RA (2014). Predicting risky choices from brain activity patterns. Proceedings of the National Academy of Sciences of the United States of America, 111 (7), 2470-5 PMID: 24550270

———-

To stop your addiction to sugar,

http://www.teamasantae.com/clubalthea/