In addition to genes known to be under positive selection (for example, SLC24A5, SLC45A2 andOCA219, 20, LARGE21 and CYP3A4/5) (Supplementary Fig. 3), we found evidence of differentiation in novel gene regions, including one implicated in malaria (for chemokine receptor 1, CR1) (Extended Data Fig. 8). CR1 carries the Knops blood group antigens and has previously been implicated in malaria susceptibility22 and severity23, with evidence suggesting positive selection in malaria-endemic regions24 (Extended Data Fig. 8). We also identified highly differentiated variants within genes involved in osmoregulation (ATP1A1 and AQP2) (Extended Data Fig. 8). Deregulation of AQP2 expression and loss-of-function mutations in ATP1A1 have been associated with essential and secondary hypertension, respectively25, 26. Climatic adaptive changes in these gene regions could potentially provide a biological basis for the high burden of hypertension and differences in salt sensitivity observed in SSA27.
http://www.nature.com/nature/journal/v517/n7534/full/nature13997.html
In contrast, overall differentiation among African populations was modest (maximum masked FST= 0.19) (Supplementary Fig. 4) and only 56/1,237 sites remained in the tail distribution after masking (Supplementary Methods, Supplementary Table 6). This suggests that a large proportion of differentiation observed among African populations could be due to Eurasian admixture, rather than adaptation to selective forces (Supplementary Note 6). Genes known to be under selection were notably enriched among the most differentiated loci after masking of Eurasian ancestry (P = 2.3 × 10−16). Among the 56 loci robust to Eurasian ancestry masking (Supplementary Table 6), we identified several loci known to be under selection (Extended Data Fig. 8), including a highly differentiated variant (rs1378940) in the CSK gene region implicated in hypertension in genome-wide association studies (GWAS)28. The major allele of rs1378940 among Africans was in complete linkage disequilibrium with the risk allele of the GWAS SNP rs1378942 (ref. 29), with the frequency of this allele highly correlated with latitude (r = −0.67), providing support for local adaptation in response to temperature as a possible mechanism for hypertension.
Reblogged this on Full of Life Community.