CDC Guideline for Prescribing Opioids for Chronic Pain — United States, 2016

Summary of Findings for Clinical Questions

The main findings of this updated review are consistent with the findings of the 2014 AHRQ report (14). In summary, evidence on long-term opioid therapy for chronic pain outside of end-of-life care remains limited, with insufficient evidence to determine long-term benefits versus no opioid therapy, though evidence suggests risk for serious harms that appears to be dose-dependent. These findings supplement findings from a previous review of the effectiveness of opioids for adults with chronic noncancer pain. In this previous review, based on randomized trials predominantly ≤12 weeks in duration, opioids were found to be moderately effective for pain relief, with small benefits for functional outcomes; although estimates vary, based on uncontrolled studies, a high percentage of patients discontinued long-term opioid use because of lack of efficacy and because of adverse events (10).

The GRADE evidence summary with type of evidence ratings for the five clinical questions for the current evidence review are outlined ( Table 1). This summary is based on studies included in the AHRQ 2014 review (35 studies) plus additional studies identified in the updated search (seven studies). Additional details on findings from the original review are provided in the full 2014 AHRQ report (14,52). Full details on the clinical evidence review findings supporting this guideline are provided in the Clinical Evidence Review (


For KQ1, no study of opioid therapy versus placebo, no opioid therapy, or nonopioid therapy for chronic pain evaluated long-term (≥1 year) outcomes related to pain, function, or quality of life. Most placebo-controlled randomized clinical trials were ≤6 weeks in duration. Thus, the body of evidence for KQ1 is rated as insufficient (0 studies contributing) (14).


For KQ2, the body of evidence is rated as type 3 (12 studies contributing; 11 from the original review plus one new study). One fair-quality cohort study found that long-term opioid therapy is associated with increased risk for an opioid abuse or dependence diagnosis (as defined by ICD-9-CM codes) versus no opioid prescription (22). Rates of opioid abuse or dependence diagnosis ranged from 0.7% with lower-dose (≤36 MME) chronic therapy to 6.1% with higher-dose (≥120 MME) chronic therapy, versus 0.004% with no opioids prescribed. Ten fair-quality uncontrolled studies reported estimates of opioid abuse, addiction, and related outcomes (5565). In primary care settings, prevalence of opioid dependence (using DSM-IV criteria) ranged from 3% to 26% (55,56,59). In pain clinic settings, prevalence of addiction ranged from 2% to 14% (57,58,60,61,6365).

Factors associated with increased risk for misuse included history of substance use disorder, younger age, major depression, and use of psychotropic medications (55,62). Two studies reported on the association between opioid use and risk for overdose (66,67). One large fair-quality retrospective cohort study found that recent opioid use was associated with increased risk for any overdose events and serious overdose events versus nonuse (66). It also found higher doses associated with increased risk. Relative to 1–19 MME/day, the adjusted hazard ratio (HR) for any overdose event (consisting of mostly nonfatal overdose) was 1.44 for 20 to 49 MME/day, 3.73 for 50–99 MME/day, and 8.87 for ≥100 MME/day. A similar pattern was observed for serious overdose. A good-quality population-based, nested case-control study also found a dose-dependent association with risk for overdose death (67). Relative to 1–19 MME/day, the adjusted odds ratio (OR) was 1.32 for 20–49 MME/day, 1.92 for 50–99 MME/day, 2.04 for 100–199 MME/day, and 2.88 for ≥200 MME/day.

Findings of increased fracture risk for current opioid use, versus nonuse, were mixed in two studies (68,69). Two studies found an association between opioid use and increased risk for cardiovascular events (70,71). Indirect evidence was found for endocrinologic harms (increased use of medications for erectile dysfunction or testosterone from one previously included study; laboratory-defined androgen deficiency from one newly reviewed study) (72,73). One study found that opioid dosages ≥20 MME/day were associated with increased odds of road trauma among drivers (74).

Opioid Dosing Strategies

For KQ3, the body of evidence is rated as type 4 (14 studies contributing; 12 from the original review plus two new studies). For initiation and titration of opioids, the 2014 AHRQ report found insufficient evidence from three fair-quality, open-label trials to determine comparative effectiveness of ER/LA versus immediate-release opioids for titrating patients to stable pain control (75,76). One new fair-quality cohort study of Veterans Affairs patients found initiation of therapy with an ER/LA opioid associated with greater risk for nonfatal overdose than initiation with an immediate-release opioid, with risk greatest in the first 2 weeks after initiation of treatment (77).

For comparative effectiveness and harms of ER/LA opioids, the 2014 AHRQ report included three randomized, head-to-head trials of various ER/LA opioids that found no clear differences in 1-year outcomes related to pain or function (7880) but had methodological shortcomings. A fair-quality retrospective cohort study based on national Veterans Health Administration system pharmacy data found that methadone was associated with lower overall risk for all-cause mortality versus morphine (81), and a fair-quality retrospective cohort study based on Oregon Medicaid data found no statistically significant differences between methadone and long-acting morphine in risk for death or overdose symptoms (82). However, a new observational study (83) found methadone associated with increased risk for overdose versus sustained-release morphine among Tennessee Medicaid patients. The observed inconsistency in study findings suggests that risks of methadone might vary in different settings as a function of different monitoring and management protocols, though more research is needed to understand factors associated with safer methadone prescribing.

For dose escalation, the 2014 AHRQ report included one fair-quality randomized trial that found no differences between more liberal dose escalation and maintenance of current doses after 12 months in pain, function, all-cause withdrawals, or withdrawals due to opioid misuse (84). However, the difference in opioid dosages prescribed at the end of the trial was relatively small (mean 52 MME/day with more liberal dosing versus 40 MME/day). Evidence on other comparisons related to opioid dosing strategies (ER/LA versus immediate-release opioids; immediate-release plus ER/LA opioids versus ER/LA opioids alone; scheduled continuous dosing versus as-needed dosing; or opioid rotation versus maintenance of current therapy; long-term effects of strategies for treating acute exacerbations of chronic pain) was not available or too limited to determine effects on long-term clinical outcomes. For example, evidence on the comparative effectiveness of opioid tapering or discontinuation versus maintenance, and of different opioid tapering strategies, was limited to small, poor-quality studies (8587).

Risk Assessment and Mitigation

For KQ4, the body of evidence is rated as type 3 for the accuracy of risk assessment tools and insufficient for the effectiveness of use of risk assessment tools and mitigation strategies in reducing harms (six studies contributing; four from the original review plus two new studies). The 2014 AHRQ report included four studies (8891) on the accuracy of risk assessment instruments, administered prior to opioid therapy initiation, for predicting opioid abuse or misuse. Results for the Opioid Risk Tool (ORT) (8991) were extremely inconsistent; evidence for other risk assessment instruments was very sparse, and studies had serious methodological shortcomings. One additional fair-quality (92) and one poor-quality (93) study identified for this update compared the predictive accuracy of the ORT, the Screener and Opioid Assessment for Patients with Pain-Revised (SOAPP-R), and the Brief Risk Interview. For the ORT, sensitivity was 0.58 and 0.75 and specificity 0.54 and 0.86; for the SOAPP-R, sensitivity was 0.53 and 0.25 and specificity 0.62 and 0.73; and for the Brief Risk Interview, sensitivity was 0.73 and 0.83 and specificity 0.43 and 0.88. For the ORT, positive likelihood ratios ranged from noninformative (positive likelihood ratio close to 1) to moderately useful (positive likelihood ratio >5). The SOAPP-R was associated with noninformative likelihood ratios (estimates close to 1) in both studies.

No study evaluated the effectiveness of risk mitigation strategies (use of risk assessment instruments, opioid management plans, patient education, urine drug testing, use of PDMP data, use of monitoring instruments, more frequent monitoring intervals, pill counts, or use of abuse-deterrent formulations) for improving outcomes related to overdose, addiction, abuse, or misuse.

Effects of Opioid Therapy for Acute Pain on Long-Term Use

For KQ5, the body of evidence is rated as type 3 (two new studies contributing). Two fair-quality retrospective cohort studies found opioid therapy prescribed for acute pain associated with greater likelihood of long-term use. One study evaluated opioid-naïve patients who had undergone low-risk surgery, such as cataract surgery and varicose vein stripping (94). Use of opioids within 7 days of surgery was associated with increased risk for use at 1 year. The other study found that among patients with a workers’ compensation claim for acute low back pain, compared to patients who did not receive opioids early after injury (defined as use within 15 days following onset of pain), patients who did receive early opioids had an increased likelihood of receiving five or more opioid prescriptions 30–730 days following onset that increased with greater early exposure. Versus no early opioid use, the adjusted OR was 2.08 (95% CI = 1.55–2.78) for 1-140 MME/day and increased to 6.14 (95% confidence interval [CI] = 4.92–7.66) for ≥450 MME/day (95).


Summary of the Contextual Evidence Review

Primary Areas of Focus

Contextual evidence is complementary information that assists in translating the clinical research findings into recommendations. CDC conducted contextual evidence reviews on four topics to supplement the clinical evidence review findings:

  • Effectiveness of nonpharmacologic (e.g., cognitive behavioral therapy [CBT], exercise therapy, interventional treatments, and multimodal pain treatment) and nonopioid pharmacologic treatments (e.g., acetaminophen, nonsteroidal anti-inflammatory drugs [NSAIDs], antidepressants, and anticonvulsants), including studies of any duration.
  • Benefits and harms of opioid therapy (including additional studies not included in the clinical evidence review, such as studies that were not restricted to patients with chronic pain, evaluated outcomes at any duration, performed ecological analyses, or used observational study designs other than cohort and case-cohort control studies) related to specific opioids, high-dose therapy, co-prescription with other controlled substances, duration of use, special populations, and potential usefulness of risk stratification/mitigation approaches, in addition to effectiveness of treatments associated with addressing potential harms of opioid therapy (opioid use disorder).
  • Clinician and patient values and preferences related to opioids and medication risks, benefits, and use.
  • Resource allocation including costs and economic efficiency of opioid therapy and risk mitigation strategies.

CDC also reviewed clinical guidelines that were relevant to opioid prescribing and could inform or complement the CDC recommendations under development (e.g., guidelines on nonpharmacologic and nonopioid pharmacologic treatments and guidelines with recommendations related to specific clinician actions such as urine drug testing or opioid tapering protocols).

Benefits and Harms of Opioid Therapy

Balance between benefits and harms is a critical factor influencing the strength of clinical recommendations. In particular, CDC considered what is known from the epidemiology research about benefits and harms related to specific opioids and formulations, high dose therapy, co-prescription with other controlled substances, duration of use, special populations, and risk stratification and mitigation approaches. Additional information on benefits and harms of long-term opioid therapy from studies meeting rigorous selection criteria is provided in the clinical evidence review (e.g., see KQ2). CDC also considered the number of persons experiencing chronic pain, numbers potentially benefiting from opioids, and numbers affected by opioid-related harms. A review of these data is presented in the background section of this document, with detailed information provided in the Contextual Evidence Review ( Finally, CDC considered the effectiveness of treatments that addressed potential harms of opioid therapy (opioid use disorder).

Regarding specific opioids and formulations, as noted by FDA, there are serious risks of ER/LA opioids, and the indication for this class of medications is for management of pain severe enough to require daily, around-the-clock, long-term opioid treatment in patients for whom other treatment options (e.g., nonopioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain (121). Time-scheduled opioid use was associated with substantially higher average daily opioid dosage than as-needed opioid use in one study (122). Methadone has been associated with disproportionate numbers of overdose deaths relative to the frequency with which it is prescribed for pain. Methadone has been found to account for as much as a third of opioid-related overdose deaths involving single or multiple drugs in states that participated in the Drug Abuse Warning Network, which was more than any opioid other than oxycodone, despite representing <2% of opioid prescriptions outside of opioid treatment programs in the United States; further, methadone was involved in twice as many single-drug deaths as any other prescription opioid (123).

Regarding high-dose therapy, several epidemiologic studies that were excluded from the clinical evidence review because patient samples were not restricted to patients with chronic pain also examined the association between opioid dosage and overdose risk (23,24,124126). Consistent with the clinical evidence review, the contextual review found that opioid-related overdose risk is dose-dependent, with higher opioid dosages associated with increased overdose risk. Two of these studies (23,24), as well as the two studies in the clinical evidence review (66,67), evaluated similar MME/day dose ranges for association with overdose risk. In these four studies, compared with opioids prescribed at <20 MME/day, the odds of overdose among patients prescribed opioids for chronic nonmalignant pain were between 1.3 (67) and 1.9 (24) for dosages of 20 to <50 MME/day, between 1.9 (67) and 4.6 (24) for dosages of 50 to <100 MME/day, and between 2.0 (67) and 8.9 (66) for dosages of ≥100 MME/day. Compared with dosages of 1-<20 MME/day, absolute risk difference approximation for 50-<100 MME/day was 0.15% for fatal overdose (24) and 1.40% for any overdose (66), and for ≥100 MME/day was 0.25% for fatal overdose (24) and 4.04% for any overdose (66). A recent study of Veterans Health Administration patients with chronic pain found that patients who died of overdoses related to opioids were prescribed higher opioid dosages (mean: 98 MME/day; median: 60 MME/day) than controls (mean: 48 MME/day, median: 25 MME/day) (127). Finally, another recent study of overdose deaths among state residents with and without opioid prescriptions revealed that prescription opioid-related overdose mortality rates rose rapidly up to prescribed doses of 200 MME/day, after which the mortality rates continued to increase but grew more gradually (128). A listing of common opioid medications and their MME equivalents is provided (Table 2).

BOX 1. CDC recommendations for prescribing opioids for chronic pain outside of active cancer, palliative, and end-of-life care

Determining When to Initiate or Continue Opioids for Chronic Pain

    1. Nonpharmacologic therapy and nonopioid pharmacologic therapy are preferred for chronic pain. Clinicians should consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, they should be combined with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate.
    2. Before starting opioid therapy for chronic pain, clinicians should establish treatment goals with all patients, including realistic goals for pain and function, and should consider how therapy will be discontinued if benefits do not outweigh risks. Clinicians should continue opioid therapy only if there is clinically meaningful improvement in pain and function that outweighs risks to patient safety.
    3. Before starting and periodically during opioid therapy, clinicians should discuss with patients known risks and realistic benefits of opioid therapy and patient and clinician responsibilities for managing therapy.

Opioid Selection, Dosage, Duration, Follow-Up, and Discontinuation

    1. When starting opioid therapy for chronic pain, clinicians should prescribe immediate-release opioids instead of extended-release/long-acting (ER/LA) opioids.
    2. When opioids are started, clinicians should prescribe the lowest effective dosage. Clinicians should use caution when prescribing opioids at any dosage, should carefully reassess evidence of individual benefits and risks when increasing dosage to ≥50 morphine milligram equivalents (MME)/day, and should avoid increasing dosage to ≥90 MME/day or carefully justify a decision to titrate dosage to ≥90 MME/day.
    3. Long-term opioid use often begins with treatment of acute pain. When opioids are used for acute pain, clinicians should prescribe the lowest effective dose of immediate-release opioids and should prescribe no greater quantity than needed for the expected duration of pain severe enough to require opioids. Three days or less will often be sufficient; more than seven days will rarely be needed.
    4. Clinicians should evaluate benefits and harms with patients within 1 to 4 weeks of starting opioid therapy for chronic pain or of dose escalation. Clinicians should evaluate benefits and harms of continued therapy with patients every 3 months or more frequently. If benefits do not outweigh harms of continued opioid therapy, clinicians should optimize other therapies and work with patients to taper opioids to lower dosages or to taper and discontinue opioids.

Assessing Risk and Addressing Harms of Opioid Use

    1. Before starting and periodically during continuation of opioid therapy, clinicians should evaluate risk factors for opioid-related harms. Clinicians should incorporate into the management plan strategies to mitigate risk, including considering offering naloxone when factors that increase risk for opioid overdose, such as history of overdose, history of substance use disorder, higher opioid dosages (≥50 MME/day), or concurrent benzodiazepine use, are present.
    2. Clinicians should review the patient’s history of controlled substance prescriptions using state prescription drug monitoring program (PDMP) data to determine whether the patient is receiving opioid dosages or dangerous combinations that put him or her at high risk for overdose. Clinicians should review PDMP data when starting opioid therapy for chronic pain and periodically during opioid therapy for chronic pain, ranging from every prescription to every 3 months.
    3. When prescribing opioids for chronic pain, clinicians should use urine drug testing before starting opioid therapy and consider urine drug testing at least annually to assess for prescribed medications as well as other controlled prescription drugs and illicit drugs.
    4. Clinicians should avoid prescribing opioid pain medication and benzodiazepines concurrently whenever possible.
    5. Clinicians should offer or arrange evidence-based treatment (usually medication-assisted treatment with buprenorphine or methadone in combination with behavioral therapies) for patients with opioid use disorder.

* All recommendations are category A (apply to all patients outside of active cancer treatment, palliative care, and end-of-life care) except recommendation 10 (designated category B, with individual decision making required); see full guideline for evidence ratings.

BOX 2. Interpretation of recommendation categories and evidence type

Recommendation Categories

Based on evidence type, balance between desirable and undesirable effects, values and preferences, and resource allocation (cost).

Category A recommendation: Applies to all persons; most patients should receive the recommended course of action.

Category B recommendation: Individual decision making needed; different choices will be appropriate for different patients. Clinicians help patients arrive at a decision consistent with patient values and preferences and specific clinical situations.

Evidence Type

Based on study design as well as a function of limitations in study design or implementation, imprecision of estimates, variability in findings, indirectness of evidence, publication bias, magnitude of treatment effects, dose-response gradient, and constellation of plausible biases that could change effects.

Type 1 evidence: Randomized clinical trials or overwhelming evidence from observational studies.

Type 2 evidence: Randomized clinical trials with important limitations, or exceptionally strong evidence from observational studies.

Type 3 evidence: Observational studies or randomized clinical trials with notable limitations.

Type 4 evidence: Clinical experience and observations, observational studies with important limitations, or randomized clinical trials with several major limitations.

Author: connie dello buono

Health educator, author and enterpreneur or ; cell 408-854-1883 Helping families in the bay area by providing compassionate and live-in caregivers for homebound bay area seniors. Blogs at Developing a new site, , for early cancer detection using genetics tests, telemedicine with electronic appointment scheduling with doctors, video chat with doctors, matching care providers with health consumers and a health concierge for all to reduce chronic care cost, find cancer cure and coordinate health care using predictive medicine and participatory.

2 thoughts on “CDC Guideline for Prescribing Opioids for Chronic Pain — United States, 2016”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s