Immune Cells Could Help Rebuild Damaged Nerves

Immune Cells Could Help Rebuild Damaged Nerves

Summary: A new study reveals neutrophils can help the nervous system clear nerve debris and assist with neuroregeneration.

Source: Case Western Reserve University.

Immune cells are normally associated with fighting infection but in a new study, scientists have discovered how they also help the nervous system clear debris, clearing the way for nerve regeneration after injury. In a study published in the Journal of Neuroscience, researchers from Case Western Reserve University School of Medicine showed certain immune cells–neutrophils–can clean up nerve debris, while previous models have attributed nerve cell damage control to other cells entirely.

“This finding is quite surprising and raises an important question: do neutrophils play a significant role in nerve disorders?” said Richard Zigmond, PhD, senior author on the study and professor of neurosciences, neurosurgery, and pathology at Case Western Reserve University School of Medicine. Neutrophils are one of the most common types of immune cells and known to engulf microorganisms, but they are not normally associated with peripheral nerve damage, such as that caused by diabetes or trauma.

In the new study, Zigmond and colleagues found damaged nerve cells produce a stream of molecular lures that specifically attract neutrophils to injury sites in mice. Damaged mouse sciatic nerves produced hundreds of times the normal amount of two “chemoattractant” molecules, Cxcl1 and Cxcl2, which attach to the surfaces of neutrophils and draw the immune cells into injured tissue. Once at the injury site, the neutrophils engulf cellular debris caused by the nerve damage, tidying up the area so the cells can repair themselves. The process is akin to clearing debris caused by a tornado before rebuilding a power grid. Without the cellular clearance mechanism, nerves can’t properly regenerate after injury.

Previous studies have pointed to immune cells called macrophages as the primary immune cell responsible for engulfing and breaking down nerve debris. The Zigmond laboratory had been studying macrophages in mouse models. Specifically, the team was studying mice genetically modified to lack a receptor on the surface of macrophages–CCR2–that helps macrophages hone in on injury sites. Zigmond asked his graduate student, PhD candidate Jane Lindborg, to look for clearance of nerve cell debris in these mice. “We expected that the clearance would be dramatically inhibited without the receptor. To our amazement, the clearance was unchanged from that in normal mice. The mystery Lindborg had to solve was how nerve cell debris is cleared in these mutant animals,” Zigmond said.

“We came up with a list of potential cellular candidates that could be compensating for the loss of these specific macrophages and used several different tests to determine which cells were clearing away the nerve debris after injury,” Lindborg said. The experiments included sorting immune cells found at injury sites by molecules on their cellular surfaces, and many hours looking at mouse cells through the microscope. “Though it turns out that several different cells pick up the slack in the absence of macrophages, it was the neutrophil that emerged as a major contributor to debris removal. We also discovered that when we depleted neutrophils, nerve debris clearance was significantly halted in both normal mice and mice lacking a major population of macrophages.” Without neutrophils, nerve cells could not properly clear debris.

Image shows a neutrophils.

The findings could open the door for new therapeutics designed to help repair nerve cells damaged by neurodegenerative disease. Said Zigmond, “The clearance of debris after an injury is necessary to allow for effective nerve regeneration. Therefore, if one would want to enhance this clearance in patients, one would need to know what cells to target.” Results from the new study suggest immunostimulant molecules that target neutrophils at nerve injury sites might enhance clean-up and promote nerve cell repair. Immunostimulant molecules are often used to treat chronic infections and immunodeficiencies, but additional studies will be needed to determine their specificity and effectiveness in the context of neuropathies.

Said Lindborg, “We have identified a novel and beneficial role for neutrophils in facilitating debris removal after injury, which has been shown to be an important step in promoting regeneration of the severed nerve. We look forward to exploring exactly how these neutrophils work in concert with other cells to accomplish nerve regeneration.”

ABOUT THIS NEUROSCIENCE RESEARCH ARTICLE

Funding: This study was conducted in collaboration with colleagues from University Hospital Regensburg in Germany. Funding for the study was provided by National Institutes of Health Grants DK097223 and NS095017 (to R.E.Z) and NS067431 and F31NS093694 (to support J.A.L.). Breeding and genotyping of animals were performed by the CWRU Visual Sciences Specialized Animal Research Core (EY11373). The CWRU Electron Microscopy Core, CWRU Cytometry and Imaging Microscopy Core, and CWRU Light Microscopy Imaging Facility also assisted with the experiments. Use of the Leica SP-8 Confocal Microscope was made available through Office of Research Infrastructure Shared Instrumentation Grant S10OD016164.

Source: Ansley Gogol – Case Western Reserve University
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Dr Graham Beards and is licensed CC BY SA 3.0.
Original Research: Abstract for “Neutrophils Are Critical for Myelin Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration” by Jane A. Lindborg, Matthias Mack and Richard E. Zigmond in Journal of Neuroscience. Published online October 25 2017 doi:10.1523/JNEUROSCI.2085-17.2017

CITE THIS NEUROSCIENCENEWS.COM ARTICLE
Case Western Reserve University “Immune Cells Could Help Rebuild Damaged Nerves.” NeuroscienceNews. NeuroscienceNews, 26 October 2017.
<http://neurosciencenews.com/immune-cells-neuron-repair-7818/&gt;.

Abstract

Neutrophils Are Critical for Myelin Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration

Wallerian degeneration (WD) is considered an essential preparatory stage to the process of axonal regeneration. In the peripheral nervous system, infiltrating monocyte-derived macrophages, which use the chemokine receptor CCR2 to gain entry to injured tissues from the bloodstream, are purportedly necessary for efficient WD. However, our laboratory has previously reported that myelin clearance in the injured sciatic nerve proceeds unhindered in the Ccr2−/− mouse model. Here, we extensively characterize WD in male Ccr2−/− mice and identify a compensatory mechanism of WD that is facilitated primarily by neutrophils. In response to the loss of CCR2, injured Ccr2−/− sciatic nerves demonstrate prolonged expression of neutrophil chemokines, a concomitant extended increase in the accumulation of neutrophils in the nerve, and elevated phagocytosis by neutrophils. Neutrophil depletion substantially inhibits myelin clearance after nerve injury in both male WT and Ccr2−/− mice, highlighting a novel role for these cells in peripheral nerve degeneration that spans genotypes.

SIGNIFICANCE STATEMENT 
The accepted view in the basic and clinical neurosciences is that the clearance of axonal and myelin debris after a nerve injury is directed primarily by inflammatory CCR2+ macrophages. However, we demonstrate that this clearance is nearly identical in WT and Ccr2−/− mice, and that neutrophils replace CCR2+ macrophages as the primary phagocytic cell. We find that neutrophils play a major role in myelin clearance not only in Ccr2−/− mice but also in WT mice, highlighting their necessity during nerve degeneration in the peripheral nervous system. These degeneration studies may propel improvements in nerve regeneration and draw critical parallels to mechanisms of nerve degeneration and regeneration in the CNS and in the context of peripheral neuropathies.

“Neutrophils Are Critical for Myelin Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration” by Jane A. Lindborg, Matthias Mack and Richard E. Zigmond in Journal of Neuroscience. Published online October 25 2017 doi:10.1523/JNEUROSCI.2085-17.2017

2 comments

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s