Amylin functions as part of the endocrine pancreas and contributes to glycemic control. The peptide is secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. It is not found in the urine.
Amylin’s metabolic function is well-characterized as an inhibitor of the appearance of nutrient [especially glucose] in the plasma.[14] It thus functions as a synergistic partner to insulin, with which it is cosecreted from pancreatic beta cells in response to meals. The overall effect is to slow the rate of appearance (Ra) of glucose in the blood after eating; this is accomplished via coordinate slowing down gastric emptying, inhibition of digestive secretion [gastric acid, pancreatic enzymes, and bile ejection], and a resulting reduction in food intake. Appearance of new glucose in the blood is reduced by inhibiting secretion of the gluconeogenic hormone glucagon. These actions, which are mostly carried out via a glucose-sensitive part of the brain stem, the area postrema, may be over-ridden during hypoglycemia. They collectively reduce the total insulin demand.[15]
Amylin also acts in bone metabolism, along with the related peptides calcitonin and calcitonin gene related peptide.[14]
Rodent amylin knockouts do not have a normal reduction of appetite following food consumption. mBecause it is an amidated peptide, like many neuropeptides, it is believed to be responsible for the effect on appetite.