Red onion, red-leaf lettuce, curly kale, orange sweet potatoes have highest anti-obesity potential , boiling reduces the levels of phytochemicals from 50-75%, steaming veggies preserves anti-obesity phytochemicals

Steam cooking resulted in slight increases in concentration of phenolic acids in sweet potatoes.

Frying onions in sunflower oil resulted in a reduction of 21% and 15% reduction in levels of quercetin glycosides in boiling onions for only 5mins.

Chlorogenic acid levels in re-leafed lettuce were distributed across the colored tissues, containing three times the level in green tissue and 8 times that of white midrib tissue.

Broccoli sprouts possesses epithiospecifier proteins which direct glucosinolate breakdown to the non-bioactive nitriles at the expense of isothiocyanate formation.
• Cruciferous vegetables contain vitamins, minerals, other nutrients, and chemicals known as glucosinolates.
• Glucosinolates break down into several biologically active compounds that are being studied for possible anticancer effects.
• Some of these compounds have shown anticancer effects in cells and animals, but the results of studies with humans have been less clear.
• Cruciferous vegetables are part of the Brassica genus of plants. They include the following vegetables, among others:
• Arugula
• Bok choy
• Broccoli
• Brussels sprouts
• Cabbage
• Cauliflower
• Collard greens • Horseradish
• Kale
• Radishes
• Rutabaga
• Turnips
• Watercress
• Wasabi
During food preparation, chewing, and digestion, the glucosinolates in cruciferous vegetables are broken down to form biologically active compounds such as indoles, nitriles, thiocyanates, and isothiocyanates (1). Indole-3-carbinol (an indole) and sulforaphane (an isothiocyanate) have been most frequently examined for their anticancer effects.

Indoles and isothiocyanates have been found to inhibit the development of cancer in several organs in rats and mice, including the bladder, breast, colon, liver, lung, and stomach (2, 3). Studies in animals and experiments with cells grown in the laboratory have identified several potential ways in which these compounds may help prevent cancer:

• They help protect cells from DNA damage.
• They help inactivate carcinogens.
• They have antiviral and antibacterial effects.
• They have anti-inflammatory effects.
• They induce cell death (apoptosis).
• They inhibit tumor blood vessel formation (angiogenesis) and tumor cell migration (needed for metastasis).
Researchers have investigated possible associations between intake of cruciferous vegetables and the risk of cancer. The evidence has been reviewed by various experts. Key studies regarding four common forms of cancer are described briefly below.
• Prostate cancer: Cohort studies in the Netherlands (4), United States (5), and Europe (6) have examined a wide range of daily cruciferous vegetable intakes and found little or no association with prostate cancer risk. However, some case-control studies have found that people who ate greater amounts of cruciferous vegetables had a lower risk of prostate cancer (7, 8).
• Colorectal cancer: Cohort studies in the United States and the Netherlands have generally found no association between cruciferous vegetable intake and colorectal cancer risk (9-11). The exception is one study in the Netherlands—the Netherlands Cohort Study on Diet and Cancer—in which women (but not men) who had a high intake of cruciferous vegetables had a reduced risk of colon (but not rectal) cancer (12).
• Lung cancer: Cohort studies in Europe, the Netherlands, and the United States have had varying results (13-15). Most studies have reported little association, but one U.S. analysis—using data from the Nurses’ Health Study and the Health Professionals’ Follow-up Study—showed that women who ate more than 5 servings of cruciferous vegetables per week had a lower risk of lung cancer (16).
• Breast cancer: One case-control study found that women who ate greater amounts of cruciferous vegetables had a lower risk of breast cancer (17). A meta-analysis of studies conducted in the United States, Canada, Sweden, and the Netherlands found no association between cruciferous vegetable intake and breast cancer risk (18). An additional cohort study of women in the United States similarly showed only a weak association with breast cancer risk (19).
A few studies have shown that the bioactive components of cruciferous vegetables can have beneficial effects on biomarkers of cancer-related processes in people. For example, one study found that indole-3-carbinol was more effective than placebo in reducing the growth of abnormal cells on the surface of the cervix (20).
In addition, several case-control studies have shown that specific forms of the gene that encodes glutathione S-transferase, which is the enzyme that metabolizes and helps eliminate isothiocyanates from the body, may influence the association between cruciferous vegetable intake and human lung and colorectal cancer risk
Flavone content of veggies
Luteon Apigenin
Celery leaf 200 750
Globe artichoke 75 100
Capsicum green 21 nd
Parsley 3 119
Broccoli 8 nd
Sweet potato leaves, purple 4 nd

Selected References
Hayes JD, Kelleher MO, Eggleston IM. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. European Journal of Nutrition 2008;47 Suppl 2:73-88. [PubMed Abstract]
Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drug Metabolism Reviews 2000;32(3-4):395-411. [PubMed Abstract]
Murillo G, Mehta RG. Cruciferous vegetables and cancer prevention. Nutrition and Cancer 2001;41(1-2):17-28. [PubMed Abstract]
Schuurman AG, Goldbohm RA, Dorant E, van den Brandt PA. Vegetable and fruit consumption and prostate cancer risk: a cohort study in The Netherlands. Cancer Epidemiology, Biomarkers & Prevention 1998;7(8):673-680. [PubMed Abstract]
Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiology, Biomarkers & Prevention 2003;12(12):1403-1409. [PubMed Abstract]
Key TJ, Allen N, Appleby P, et al. Fruits and vegetables and prostate cancer: no association among 1104 cases in a prospective study of 130544 men in the European Prospective Investigation into Cancer and Nutrition (EPIC). International Journal of Cancer 2004;109(1):119-124. [PubMed Abstract]
Kolonel LN, Hankin JH, Whittemore AS, et al. Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiology, Biomarkers & Prevention 2000;9(8):795-804. [PubMed Abstract]
Jain MG, Hislop GT, Howe GR, Ghadirian P. Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada. Nutrition and Cancer 1999;34(2):173-184. [PubMed Abstract]
McCullough ML, Robertson AS, Chao A, et al. A prospective study of whole grains, fruits, vegetables and colon cancer risk. Cancer Causes & Control 2003;14(10):959-970. [PubMed Abstract]
Flood A, Velie EM, Chaterjee N, et al. Fruit and vegetable intakes and the risk of colorectal cancer in the Breast Cancer Detection Demonstration Project follow-up cohort. The American Journal of Clinical Nutrition 2002;75(5):936-943. [PubMed Abstract]
Michels KB, Edward Giovannucci, Joshipura KJ, et al. Prospective study of fruit and vegetable consumption and incidence of colon and rectal cancers. Journal of the National Cancer Institute 2000;92(21):1740-1752. [PubMed Abstract]
Voorrips LE, Goldbohm RA, van Poppel G, et al. Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study: The Netherlands Cohort Study on Diet and Cancer. American Journal of Epidemiology 2000;152(11):1081-1092. [PubMed Abstract]
Neuhouser ML, Patterson RE, Thornquist MD, et al. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the beta-carotene and retinol efficacy trial (CARET). Cancer Epidemiology, Biomarkers & Prevention 2003;12(4):350-358. [PubMed Abstract]
Voorrips LE, Goldbohm RA, Verhoeven DT, et al. Vegetable and fruit consumption and lung cancer risk in the Netherlands Cohort Study on diet and cancer. Cancer Causes and Control 2000;11(2):101-115. [PubMed Abstract]
Chow WH, Schuman LM, McLaughlin JK, et al. A cohort study of tobacco use, diet, occupation, and lung cancer mortality. Cancer Causes and Control 1992;3(3):247-254. [PubMed Abstract]
Feskanich D, Ziegler RG, Michaud DS, et al. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. Journal of the National Cancer Institute 2000;92(22):1812-1823. [PubMed Abstract]
Terry P, Wolk A, Persson I, Magnusson C. Brassica vegetables and breast cancer risk. JAMA 2001;285(23):2975-2977. [PubMed Abstract]
Smith-Warner SA, Spiegelman D, Yaun SS, et al. Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies. JAMA 2001;285(6):769-776. [PubMed Abstract]
Zhang S, Hunter DJ, Forman MR, et al. Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. Journal of the National Cancer Institute 1999;91(6):547-556. [PubMed Abstract]
Bell MC, Crowley-Nowick P, Bradlow HL, et al. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecologic Oncology 2000;78(2):123-129. [PubMed Abstract]
Epplein M, Wilkens LR, Tiirikainen M, et al. Urinary isothiocyanates; glutathione S-transferase M1, T1, and P1 polymorphisms; and risk of colorectal cancer: the Multiethnic Cohort Study. Cancer Epidemiology, Biomarkers & Prevention 2009;18(1):314-320. [PubMed Abstract]
London SJ, Yuan JM, Chung FL, et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet 2000;356(9231):724-729. [PubMed Abstract]
Yang G, Gao YT, Shu XO, et al. Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk. American Journal of Clinical Nutrition 2010;91(3):704-711. [PubMed Abstract]

Collected by
Connie Dello Buono

Connie Dello Buono ;

Call for part time or full time business or job 408-854-1883 in financial planning, college planning, retirement planning and helping others with their idle money to work for them at 13%, tax free, safe and secured with free health benefits


Toxic chemicals /environmental toxins/carcinogens affect the estrogens/other hormones in our cells

When we wash pesticides from our produce, we do it because they alter our body cells and create an imbalance in our hormones. Some of these chemicals are estrogenic, affecting the normal estrogen levels in our body. When we eat corned beef, we add cabbage and tomatoes in the hopes that toxins will be excreted (removed) by our body with the help of these veggies.

Men/women who wanted to increase their libido should eat hormone-free foods (present at Trader’s Joes and other health food stores) and use chemicals free from substances that are carcinogenic and toxic even when exposed to our skin (such as lotion, soaps, hair colors, deodorants, perfumes and shampoos).

For women, you know that there is hormonal imbalance from the texture of your skin, puffiness of your face, extra weight in the middle, heavy or absence in menstruation, migraine, allergies and depressive moods.
From this site’ article about Boosting Libido: The more weight men carry, the more estrogen and less testosterone they have. To maintain low estrogen levels, eliminate beer and refined foods like white flour and sugar. Choose fresh fish, lean meats like chicken and turkey, and omega-3-rich foods such as flaxseeds, pumpkin seeds, and walnuts. Load up on cruciferous vegetables like brussels sprouts and kale, high in indole-3-carbinol, a compound that helps the liver eliminate excessive estrogen.

How do we avoid these chemicals?
• stay away from them and select pesticide-free, hormone-free, whole foods (farmer’s market or your garden)
• add fiber in our diet
• drink more alkaline water with lemon or cranberries (less acidic foods such as meat)
• exercise and sweat more (sauna)
• do a water hydrotherapy, alternating hot and cold shower
• do a light fasting, liquid diet only every month or quarter using brown rice protein powder or your own detox with nutritional supplementation
Note: Fat tissues in our bodies are where breast, uterine and prostate cancers are also located.

Connie Dello Buono , now hiring in financial arena to help others with zero market risk retirement savings, 8% -13% return and full living benefits, access to funds for terminal, critical and chronic illness, 408-854-1883