Cancer in our cats and dogs

  • In the 1970’s Golden Retrievers on average would live to be 17 years old. NOW they average only 9 years…
  • Just 50 years ago only 1 in 100 dogs got cancer. NOW, it’s 1 in 1.65 dogs that will be diagnosed with cancer this year…
  • Cancer is the leading cause of death among cats. In fact, 1 in 3 cats will be affected by this devastating disease this year alone.

The culprit of cancer can be found in the environment and nutrition of our pets.

Connie

Are dog size and intelligence linked?

dog size.JPG

Classification Obey Heavy Weight Avg Low Weight Avg
Lowest Degree of Working/Obedience Intelligence 71 56
Fair Working/Obedience Intelligence 0.30 43 30
Average Working/Obedience Intelligence 0.50 60 44
Above Average Working Dogs 0.70 55 40
Excellent Working Dogs 0.85 53 41
Brightest Dogs 0.95 66 49

https://data.world/sharon/what-is-the-correlation-between-dog-size-and-intelligence/insights

Brain Scans of Service Dog Trainees Help Sort Weaker Recruits From the Pack

Summary: Brain scans can help predict which dogs will make it through rigorous training to become service dogs for people with disabilities.

Source: Emory Health Science.

Brain scans of canine candidates to assist people with disabilities can help predict which dogs will fail a rigorous service training program, a study by Emory University finds.

Brain scans of canine candidates to assist people with disabilities can help predict which dogs will fail a rigorous service training program, a study by Emory University finds.

The journal Scientific Reports published the results of the study, involving 43 dogs who underwent service training at Canine Companions for Independence (CCI) in Santa Rosa, California.

“Data from functional magnetic resonance imaging (fMRI) provided a modest, but significant, improvement in the ability to identify dogs that were poor candidates,” says Emory neuroscientist Gregory Berns, who led the research. “What the brain imaging tells us is not just which dogs are more likely to fail, but why.”

All of the dogs in the study underwent a battery of behavioral tests showing that they had a calm temperament before being selected for training. Despite calm exteriors, however, some of the dogs showed higher activity in the amygdala – an area of the brain associated with excitability. These dogs were more likely to fail the training program.

“The brain scans may be like taking a dog’s mental temperature,” Berns says. “You could think of it as a medical test with a normal range for a service dog. And the heightened neural activity that we see in the amygdala of some dogs may be outside of that range, indicating an abnormal value for a successful service dog.”

The findings are important, he adds, since the cost of training a service dog ranges from $20,000 to $50,000. As many as 70 percent of the animals that start a six-to-nine-month training program have to be released for behavioral reasons.

“There are long waiting lists for service dogs, and the training is lengthy and expensive,” Berns says. “So the goal is to find more accurate ways to eliminate unsuitable dogs earlier in the process.

The study found that fMRI boosted the ability to identify dogs that would ultimately fail to 67 percent, up from about 47 percent without the use of fMRI.

“This type of approach is not going to be feasible for individual trainers and their dogs because of the expense of fMRI,” Berns says. “It would only be practical for organizations that train large numbers of dogs every year.”

CCI is a non-profit that breeds, raises and trains dogs to assist human partners. Its service dog program, designed for disabled people, provides dogs to do tasks such as turn on lights, pick up dropped keys, open a door and pull a manual wheelchair.

Golden retrievers, Labradors — or crosses between the two — are the usual CCI service dog breeds, due to their generally calm and affable natures. After the puppies are weaned, they are adopted by volunteer puppy raisers for 15 months, before returning to CCI to undergo behavioral tests. Those that pass begin training.

For the Scientific Reports paper, the researchers taught the dogs how to remain still while undergoing an fMRI at the start of the training program.

Image shows service dogs.

The Berns lab was the first to conduct fMRI experiments on awake, unrestrained dogs, as part of an ongoing project to understand canine cognition and inter-species communication. In an early experiment, dogs were trained to respond to hand signals. One signal meant the dog would receive a food treat, and another signal meant that the dog would not receive one. The caudate region of the brain, associated with rewards in humans, showed activation when the dogs saw the signal for the treat, but not for the non-treat signal.

The researchers adapted this experiment for the current study — the largest yet involving dogs undergoing fMRI. The dogs were taught hand signals for “treat” and “no treat,” but sometimes the signals were given by the dog’s trainer and other times by a stranger.

The results found that dogs with stronger activity in the caudate in response to the treat signal – regardless of who gave the signal – were slightly more likely to successfully complete the service dog training program.

However, if a dog had relatively more activity in the amygdala in response to the treat signal – particularly if the signal was given by a stranger – that increased the likelihood that the dog would fail.

“The ideal service dog is one that is highly motivated, but also doesn’t get excessively excited or nervous,” Berns says. “The two neural regions that we focused on – the caudate and the amygdala – seem to distinguish those two traits. Our findings suggest that we may be able to pick up variations in these internal mental states before they get to the level of overt behaviors.”

Berns hopes that the technology may become more refined and have applications for a broader range of working dogs, such as those used to assist the military and police forces.

ABOUT THIS NEUROSCIENCE RESEARCH ARTICLE

Co-authors of the study include Andrew Brooks and Mark Spivak from Dog Star Technologies in Sandy Springs, Georgia, and Kerinne Levy from CCI.

Source: Carol Clark – Emory Health Science
Image Source: NeuroscienceNews.com image is credited to Gregory Berns, Emory University.
Original Research: Full open access research for “Functional MRI in Awake Dogs Predicts Suitability for Assistance Work” by Gregory S. Berns, Andrew M. Brooks, Mark Spivak & Kerinne Levy in Scientific Reports. Published online March 7 2017 doi:10.1038/srep43704

CITE THIS NEUROSCIENCENEWS.COM ARTICLE
Emory Health Science “Caffeine Boost Enzyme That Could Protect Against Dementia.” NeuroscienceNews. NeuroscienceNews, 4 March 2017.
<http://neurosciencenews.com/service-dog-brain-scan-6214/&gt;.

Abstract

Functional MRI in Awake Dogs Predicts Suitability for Assistance Work

The overall goal of this work was to measure the efficacy of fMRI for predicting whether a dog would be a successful service dog. The training and imaging were performed in 49 dogs entering service training at 17–21 months of age. 33 dogs completed service training and were matched with a person, while 10 were released for behavioral reasons (4 were selected as breeders and 2 were released for medical reasons.) After 2 months of training, fMRI responses were measured while each dog observed hand signals indicating either reward or no reward and given by both a familiar handler and a stranger. Using anatomically defined ROIs in the caudate, amygdala, and visual cortex, we developed a classifier based on the dogs’ subsequent training outcomes. The classifier had a positive predictive value of 94% and a negative predictive value of 67%. The area under the ROC curve was 0.91 (0.80 with 4-fold cross-validation, P = 0.01), indicating a significant predictive capability. The magnitude of response in the caudate was positively correlated with a successful outcome, while the response in the amygdala depended on the interaction with the visual cortex during the stranger condition and was negatively correlated with outcome (higher being associated with failure). These results suggest that, as indexed by caudate activity, successful service dogs generalize associations to hand signals regardless who gives them but without excessive arousal as measured in the amygdala.

“Functional MRI in Awake Dogs Predicts Suitability for Assistance Work” by Gregory S. Berns, Andrew M. Brooks, Mark Spivak & Kerinne Levy in Scientific Reports. Published online March 7 2017 doi:10.1038/srep43704

Cancers in dog

At some point, dogs over 10 yrs old will get cancer according to one post in the internet. Notice that the signs or cues for the presence of cancer in dogs is similar or the same with humans.

Senior care and dogs

In senior care homes, animal stuff toys are given to seniors instead of actual animals for many reasons. The presence of a pet or human babies is an important member of a health care team for they bring joy to the faces of seniors (other joyful stuff for seniors: music, their favorite dessert, clothes, visits from families, gift from families, gourmet cooking from their caregivers, massage).

Connie of Motherhealth, bay area caregivers for homebound seniors 408-854-1883


Cancers in dogs can be treated (with varying success) using surgery, chemotherapy, radiation, and immunotherapy, the best thing you can do is to catch the disease in its early stages — before it spreads. Early detection is critical for successful treatment and recovery.

One of the most common ways dog owners detect cancer is by finding a lump or a mass on their dog (the dog typically isn’t bothered by the lump). But it’s important to clarify, just because you find a lump, doesn’t mean it’s cancer. Still, a veterinarian should investigate any lump as soon as possible.

Symptoms to Detect Cancer in Dogs

The National Canine Cancer Foundation says there are 10 warning signs your dog might have cancer:

  1. Abnormal swellings that persist or continue to grow
  2. Sores that don’t heal
  3. Weight loss
  4. Loss of appetite
  5. Bleeding or discharge from any body opening
  6. Offensive odor
  7. Difficulty eating or swallowing
  8. Hesitation to exercise or loss of stamina
  9. Persistent lameness or stiffness
  10. Difficulty breathing, urinating, or defecating.

If you find a lump or your dog has any of the other symptoms above, don’t delay in getting it investigated by your family veterinarian. If it’s confirmed your dog has cancer, it’s advised to get a second opinion — possibly by a board-certified veterinary oncologist — to discuss your options.

Some cancers can be cured with one or a combination of treatments, but sadly, many cannot and merely delay the inevitable. Some pet owners opt out of treatment completely and instead help their dogs with pain management (palliative care) throughout the course of the disease.
Read more at http://dogtime.com/dog-health/canine-cancer/19958-top-10-signs-of-cancer-in-dogs#CS5wyyiWW59FiODp.99

Gene therapy cured Type 1 Diabetes of a dog

In animals, diabetes is most commonly encountered in dogs and cats. Middle-aged animals are most commonly affected. Female dogs are twice as likely to be affected as males, while according to some sources, male cats are also more prone than females. In both species, all breeds may be affected, but some small dog breeds are particularly likely to develop diabetes, such as Miniature Poodles.[108] The symptoms may relate to fluid loss and polyuria, but the course may also be insidious. Diabetic animals are more prone to infections. The long-term complications recognized in humans are much rarer in animals. The principles of treatment (weight loss, oral antidiabetics, subcutaneous insulin) and management of emergencies (e.g. ketoacidosis) are similar to those in humans.

Gene therapy is the therapeutic delivery of nucleic acid polymers into a patient’s cells as a drug to treat disease.[1] The first attempt at modifying human DNA was performed in 1980 by Martin Cline, but the first successful and approved[by whom?] nuclear gene transfer in humans was performed in May 1989.[2] The first therapeutic use of gene transfer as well as the first direct insertion of human DNA into the nuclear genome was performed by French Anderson in a trial starting in September 1990.

Between 1989 and February 2016, over 2,300 clinical trials had been conducted, more than half of them in phase I.[3]

It should be noted that not all medical procedures that introduce alterations to a patient’s genetic makeup can be considered gene therapy. Bone marrow transplantation and organ transplants in general have been found to introduce foreign DNA into patients.[4] Gene therapy is defined by the precision of the procedure and the intention of direct therapeutic effects.

Gene therapy was conceptualized in 1972, by authors who urged caution before commencing human gene therapy studies.

The first attempt, an unsuccessful one, at gene therapy (as well as the first case of medical transfer of foreign genes into humans not counting organ transplantation) was performed by Martin Cline on 10 July 1980.[5][6] Cline claimed that one of the genes in his patients was active six months later, though he never published this data or had it verified[7] and even if he is correct, it’s unlikely it produced any significant beneficial effects treating beta-thalassemia.

After extensive research on animals throughout the 1980s and a 1989 bacterial gene tagging trial on humans, the first gene therapy widely accepted as a success was demonstrated in a trial that started on 14 September 1990, when Ashi DeSilva was treated for ADASCID.[8]

The first somatic treatment that produced a permanent genetic change was performed in 1993.[9]

This procedure was referred to sensationally and somewhat inaccurately in the media as a “three parent baby”, though mtDNA is not the primary human genome and has little effect on an organism’s individual characteristics beyond powering their cells.

Gene therapy is a way to fix a genetic problem at its source. The polymers are either translated into proteins, interfere with target gene expression, or possibly correct genetic mutations.

The most common form uses DNA that encodes a functional, therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a “vector“, which carries the molecule inside cells.

Early clinical failures led to dismissals of gene therapy. Clinical successes since 2006 regained researchers’ attention, although as of 2014, it was still largely an experimental technique.[10]These include treatment of retinal diseases Leber’s congenital amaurosis[11][12][13][14] and choroideremia,[15] X-linked SCID,[16] ADA-SCID,[17][18] adrenoleukodystrophy,[19] chronic lymphocytic leukemia (CLL),[20] acute lymphocytic leukemia (ALL),[21] multiple myeloma,[22] haemophilia[18] and Parkinson’s disease.[23] Between 2013 and April 2014, US companies invested over $600 million in the field.[24]

The first commercial gene therapy, Gendicine, was approved in China in 2003 for the treatment of certain cancers.[25] In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia.[26] In 2012 Glybera, a treatment for a rare inherited disorder, became the first treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.

Following early advances in genetic engineering of bacteria, cells, and small animals, scientists started considering how to apply it to medicine. Two main approaches were considered – replacing or disrupting defective genes.[28] Scientists focused on diseases caused by single-gene defects, such as cystic fibrosis, haemophilia, muscular dystrophy, thalassemia and sickle cell anemia. Glybera treats one such disease, caused by a defect in lipoprotein lipase.[27]

DNA must be administered, reach the damaged cells, enter the cell and express/disrupt a protein.[29] Multiple delivery techniques have been explored. The initial approach incorporated DNA into an engineered virus to deliver the DNA into a chromosome.[30][31] Naked DNA approaches have also been explored, especially in the context of vaccine development.[32]

Generally, efforts focused on administering a gene that causes a needed protein to be expressed. More recently, increased understanding of nuclease function has led to more direct DNA editing, using techniques such as zinc finger nucleases and CRISPR. The vector incorporates genes into chromosomes. The expressed nucleases then knock out and replace genes in the chromosome. As of 2014 these approaches involve removing cells from patients, editing a chromosome and returning the transformed cells to patients.[33]

Gene editing is a potential approach to alter the human genome to treat genetic diseases,[34] viral diseases,[35] and cancer.[36] As of 2016 these approaches were still years from being medicine.

Somatic

In somatic cell gene therapy (SCGT), the therapeutic genes are transferred into any cell other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Any such modifications affect the individual patient only, and are not inherited by offspring. Somatic gene therapy represents mainstream basic and clinical research, in which therapeutic DNA (either integrated in the genome or as an external episome or plasmid) is used to treat disease.

Over 600 clinical trials utilizing SCGT are underway in the US. Most focus on severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia and cystic fibrosis. Such single gene disorders are good candidates for somatic cell therapy. The complete correction of a genetic disorder or the replacement of multiple genes is not yet possible. Only a few of the trials are in the advanced stages.[39]

Germline

In germline gene therapy (GGT), germ cells (sperm or eggs) are modified by the introduction of functional genes into their genomes. Modifying a germ cell causes all the organism’s cells to contain the modified gene. The change is therefore heritable and passed on to later generations. Australia, Canada, Germany, Israel, Switzerland and the Netherlands[40] prohibit GGT for application in human beings, for technical and ethical reasons, including insufficient knowledge about possible risks to future generations[40] and higher risks versus SCGT.[41] The US has no federal controls specifically addressing human genetic modification (beyond FDA regulations for therapies in general).

Vectors

The delivery of DNA into cells can be accomplished by multiple methods. The two major classes are recombinant viruses (sometimes called biological nanoparticles or viral vectors) and naked DNA or DNA complexes (non-viral methods).

Viruses

Main article: Viral vector

In order to replicate, viruses introduce their genetic material into the host cell, tricking the host’s cellular machinery into using it as blueprints for viral proteins. Scientists exploit this by substituting a virus’s genetic material with therapeutic DNA. (The term ‘DNA’ may be an oversimplification, as some viruses contain RNA, and gene therapy could take this form as well.) A number of viruses have been used for human gene therapy, including retrovirus, adenovirus, lentivirus, herpes simplex, vaccinia and adeno-associated virus.[3] Like the genetic material (DNA or RNA) in viruses, therapeutic DNA can be designed to simply serve as a temporary blueprint that is degraded naturally or (at least theoretically) to enter the host’s genome, becoming a permanent part of the host’s DNA in infected cells.

Non-viral

Non-viral methods present certain advantages over viral methods, such as large scale production and low host immunogenicity. However, non-viral methods initially produced lower levels of transfection and gene expression, and thus lower therapeutic efficacy. Later technology remedied this deficiency[citation needed].

Methods for non-viral gene therapy include the injection of naked DNA, electroporation, the gene gun, sonoporation, magnetofection, the use of oligonucleotides, lipoplexes, dendrimers, and inorganic nanoparticles.

Some of the unsolved problems include:

  • Short-lived nature – Before gene therapy can become a permanent cure for a condition, the therapeutic DNA introduced into target cells must remain functional and the cells containing the therapeutic DNA must be stable. Problems with integrating therapeutic DNA into the genome and the rapidly dividing nature of many cells prevent it from achieving long-term benefits. Patients require multiple treatments.
  • Immune response – Any time a foreign object is introduced into human tissues, the immune system is stimulated to attack the invader. Stimulating the immune system in a way that reduces gene therapy effectiveness is possible. The immune system‘s enhanced response to viruses that it has seen before reduces the effectiveness to repeated treatments.
  • Problems with viral vectors – Viral vectors carry the risks of toxicity, inflammatory responses, and gene control and targeting issues.
  • Multigene disorders – Some commonly occurring disorders, such as heart disease, high blood pressure, Alzheimer’s disease, arthritis, and diabetes, are affected by variations in multiple genes, which complicate gene therapy.
  • Some therapies may breach the Weismann barrier (between soma and germ-line) protecting the testes, potentially modifying the germline, falling afoul of regulations in countries that prohibit the latter practice.[45]
  • Insertional mutagenesis – If the DNA is integrated in a sensitive spot in the genome, for example in a tumor suppressor gene, the therapy could induce a tumor. This has occurred in clinical trials for X-linked severe combined immunodeficiency (X-SCID) patients, in which hematopoietic stem cells were transduced with a corrective transgene using a retrovirus, and this led to the development of T cell leukemia in 3 of 20 patients.[46][47] One possible solution is to add a functional tumor suppressor gene to the DNA to be integrated. This may be problematic since the longer the DNA is, the harder it is to integrate into cell genomes. CRISPR technology allows researchers to make much more precise genome changes at exact locations.[48]
  • Cost – Alipogene tiparvovec or Glybera, for example, at a cost of $1.6 million per patient, was reported in 2013 to be the world’s most expensive drug.
%d bloggers like this: