Vitamin D lengthens Telomeres, an aging marker

Vitamin D is a steering hormone that controls the expression over a thousand different genes in your body. The primary source of Vitamin D is UV- Radiation, our skin can make Vitamin D upon exposure to UV Radiation. Though we are not the only one with this ability. Mushroom also has an ability to make vitamin D upon UV Radiation exposure and mushroom has been out in the sun and a great source of vitamin D.

There are few factors that affect our ability to produce and use vitamin D:

  1. Sunscreen: Sunscreen blocks UV Radiation
  1. Skin Pigmentation: Melanin is a natural sunscreen
  1. Age: As we age, our body became less efficient in producing vitamin D. A 70 year old produces four times less than 20 year olds.
  1. Body Fat: Body fat affects the ability to use vitamin D by reducing bioavalability of Vitamin D that is fat soluble. The more of the vitamin D store in fat, the less it is being released in your blood stream.

There is a sweet spot in Vitamin D, too much is as bad as too little. The optimum level of vitamin D in serum are considered between 30 and 80 nanograms per milliliter of serum. The best and easy way to increase your vitamin D levels is to increasing your dietary intake. Richest source of Vitamin D is fish.

Vitamin D has been shown to regulate the aging process. Telomeres are tips of chromosomes. They protect our DNA. Telomere length is a biological marker for aging. Those individuals who have low levels of Vitamin D has the shortest of Telomeres. Telomeres shortening correlated to 5 years of biological aging.

CRISPR-Cas9 Allows Further Genetic Manipulation By Exploiting Endogenous DNA Repair Mechanisms

How diet can change your epigenome and affect cancer and chromatin of DNA

Food that shapes you: how diet can change your epigenome

You are what you eat – quite literally. Our diet can influence the tiny changes in our genome that underlie several diseases, including cancer and obesity.

DNA helix
Image courtesy of mstroeck /
Wikimedia Commons

When you look at yourself in the mirror you may ask, ‘How, given that all the cells in my body carry the same DNA, can my organs look so unlike and function so differently?’ With the recent progress in epigenetics, we are beginning to understand. We now know that cells use their genetic material in different ways: genes are switched on and off, resulting in the astonishing level of differentiation within our bodies.

Epigenetics describes the cellular processes that determine whether a certain gene will be transcribed and translated into its corresponding protein. The message can be conveyed through small and reversible chemical modifications to chromatin (figure 1). For example, the addition of acetyl groups (acetylation) to DNA scaffold proteins (histones) enhances transcription. In contrast, the addition of methyl groups (methylation) to some regulatory regions of the DNA itself reduces gene transcription. These modifications, together with other regulatory mechanisms, are particularly important during development – when the exact timing of gene activation is crucial to ensure accurate cellular differentiation – but continue to have an effect into adulthood.

Epigenetic modifications can occur in response to environmental stimuli, one of the most important of which is diet. The mechanisms by which diet affects epigenetics are not fully understood, but some clear examples are well known.

Figure 1: Epigenetic changes
to the chromatin structure
involve mainly histone
acetylation – which enhances
transcription – and DNA
methylation, whereby methyl
groups are covalently bound
to cytosine, making the
chromatin structure less
accessible. These changes are
reversible, allowing gene
activity to be adapted to
changing environmental
conditions or signals.
This image was updated on the
13 May 2014.

Image courtesy of Cristina Florean

During the winter of 1944–1945, the Netherlands suffered a terrible famine as a result of the German occupation, and the population’s nutritional intake dropped to fewer than 1000 calories per day. Women continued to conceive and give birth during these hard times, and these children are now adults in their sixties. Recent studies have revealed that these individuals – exposed to calorie restrictions while in their mother’s uterus – have a higher rate of chronic conditions such as diabetes, cardiovascular disease and obesity than their siblings. The first months of pregnancy seem to have had the greatest effect on disease risk.

How can something that happened before you were even born influence your life as much as 60 years later? The answer appears to lie in the epigenetic adaptations made by the foetus in response to the limited supply of nutrients. The exact epigenetic alterations are still not clear, but it was discovered that people who were exposed to famine in utero have a lower degree of methylation of a gene implicated in insulin metabolism (the insulin-like growth factor II gene) than their unexposed siblings (Heijmans et al., 2008). This has some startling implications: although epigenetic changes are in theory reversible, useful changes that take place during embryonic development can nonetheless persist in adult life, even when they are no longer useful and could even be detrimental. Some of these changes may even persist through generations, affecting the grandchildren of the exposed women (Painter et al., 2008).

Figure 2: Two queen
honeybee larvae floating in
royal jelly in their queen cell.
Queen larvae are fed
exclusively with royal jelly,
which triggers the
development of the queen
phenotype, allowing
reproduction 

Image courtesy of Waugsberg /
Wikimedia Commons

The effects of early diet on epigenetics are also clearly visible among honeybees. What differentiates the sterile worker bees from the fertile queen is not genetics, but the diet that they follow as larvae (figure 2). Larvae designated to become queens are fed exclusively with royal jelly, a substance secreted by worker bees, which switches on the gene programme that results in the bee becoming fertile.

Another striking example of how nutrition influences epigenetics during development is found in mice. Individuals with an active agouti gene have a yellow coat and a propensity to become obese. This gene, however, can be switched off by DNA methylation. If a pregnant agouti mouse receives dietary supplements that can release methyl groups – such as folic acid or choline – the pups’ agouti genes become methylated and thus inactive. These pups still carry the agouti gene but they lose the agouti phenotype: they have brown fur and no increased tendency towards obesity (figure 3).

Figure 3: The agouti mouse
model. The phenotype
depends on the mother’s diet
during pregnancy. A:
Normally, the agouti gene is
associated with yellow fur
and a tendency towards
obesity. B: Mice born to a
mother receiving dietary
supplements of methyl
donors, however, have a
methylated and thus
inactivated agouti gene,
resulting in a thin, brown-
fur phenotype.

Image courtesy of Cristina
Florean

An insufficient uptake of folic acid is also implicated in developmental conditions in humans, such as spina bifida and other neural tube defects. To prevent such problems, folic acid supplements are widely recommended for pregnant women and for those hoping to conceive (see Hayes et al., 2009).

What about the dietary effect on epigenetics in adult life? Many components of food have the potential to cause epigenetic changes in humans. For example, broccoli and other cruciferous vegetables contain isothiocyanates, which are able to increase histone acetylation. Soya, on the other hand, is a source of the isoflavone genistein, which is thought to decrease DNA methylation in certain genes. Found in green tea, the polyphenol compound epigallocatechin-3-gallate has many biological activities, including the inhibition of DNA methylation. Curcumin, a compound found in turmeric (Curcuma longa), can have multiple effects on gene activation, because it inhibits DNA methylation but also modulates histone acetylation. Figure 4 shows further examples of epigenetically active molecules.

Fruit market in Spain
Image courtesy of Marcel
Theisen / Wikimedia Commons

Most of the data collected so far about these compounds come from in vitro experiments. The purified molecules were tested on cellular lines, and their effects on epigenetic targets were measured. It remains to be proved if eating the corresponding foods has the same detectable effect as has been seen in cellular models (Gerhauser, 2013).

Epidemiological studies, however, suggest that populations that consume large amounts of some of these foods appear to be less prone to certain diseases (Siddiqui et al., 2007). However, most of these compounds not only have epigenetic effects but also affect other biological functions. A food may contain many different biologically active molecules, making it difficult to draw a direct correlation between epigenetic activity and the overall effect on the body. Finally, all foods undergo many transformations in our digestive system, so it is not clear how much of the active compounds actually reach their molecular targets.

As a result of their far-reaching effects, epigenetic changes are involved in the development of many illnesses, including some cancers and neurological diseases. As cells become malignant, or cancerous, epigenetic modifications can deactivate tumour suppressor genes, which prevent excessive cell proliferation (Esteller, 2007). Because these epigenetic modifications are reversible, there is great interest in finding molecules – especially dietary sources – that might undo these damaging changes and prevent the development of the tumour.

We all know that a diet rich in fruit and vegetables is healthy for our everyday life, but it is becoming increasingly clear that it might be much more important than that, having significant implications for our long-term health and life expectancy.

References

Resources

Connie’s Comments:

  • Eat colored fruits and Veggies.
  • For quality supplementation that resets your gene expression to a younger you:
    http://www.clubalthea.pxproducts.com
  • Email Connie for nutrition tester for your doctor’s office or health care provider.
    See Dr Oz Pharmanex scanner in YouTube.
    We are looking for business owners to bring nutrition testers to all.

 

 

UC biologists find link between paternal diet and offspring’s health

UC biologists find link between paternal diet and offspring’s health

Doctors long have stressed the importance of good nutrition for expectant mothers.

Now biologists at the University of Cincinnati say the father’s diet could play a similar role in the health of a baby.

UC biology professors Michal Polak and Joshua Benoit manipulated the nutrition of male fruit flies and observed a strong correlation between poor diet and poor survivorship among their offspring. The study was published this week in the journal Proceedings of the Royal Society B.

“We were really surprised,” Polak said. “In many species, the moms do a lot of the care. So we expect there to be an effect from maternal diet on offspring because of that strong link. But it was a real surprise to find a link between paternal diet and offspring.”

UC collaborated on the study with researchers from the University of Western Australia and the University of Sydney’s Charles Perkins Centre.

Everyone knows a father is responsible for half of his offspring’s genes. But the UC study comes at a time when researchers are learning more about other influences fathers have on their offspring’s health that are not necessarily coded within genes, a concept called epigenetics. These influences include direct environmental effects such as exposure to toxins that can be passed from the father to his offspring through his seminal plasma.

Epigenetics is the way by which cells read genes, making some dormant and others active. Environmental cues can turn certain genes on or off. And these epigenetic modifications, too, can be inherited.

For example, an Australian study in 2016 found that male mice that lived on the equivalent of a fast-food diet were more likely to have sons that were diabetic even though daughters remained unaffected. If these traits were coded in the father’s DNA, both sons and daughters would see similar health effects.

“Epigenetic changes are seen in population genetics as less durable than actual mutations to the genetic code or DNA molecule,” Polak said. “If it’s a dominant, deleterious mutation, it could be quickly eliminated out of a gene pool by selection. But if it’s positively selected, then it could sweep the gene pool and increase in frequency until it becomes fixed.”

Research on fruit flies has earned six Nobel Prizes, including this year’s winner in physiology or medicine. The latest Nobel Prize study examined how genes control body clocks or circadian rhythms, which can help explain why some people have chronic trouble sleeping.

“I am very pleased for the field. I am very pleased for the fruit fly,” co-winner Michael Rosbash told The Associated Press.

Fruit flies are found around the world. UC’s Benoit even saw them buzzing around inside a research station in Antarctica, where they probably stowed away on food supplies imported from Chile.

The flies became popular study subjects in the early 1900s when biologists began to unravel how genetic inheritance worked. High school biology textbooks still use the color of fruit fly eyes to illustrate the concept.

Today, scientists regularly study fruit flies because they share 60 percent of our genes and more than 75 percent of our disease genes. Geneticists have mapped their entire genome. More than 150 years of study have made this unassuming little fly a good model system, Polak said.

“It’s almost arbitrary why fruit flies were chosen,” Polak said. “It just became the workhorse in those original labs.”

Benoit said flies are a practical and inexpensive test subject.

“They reproduce quickly. You can rear a few hundred in just one of these little jars. You can have thousands of fruit flies in the same amount of space you could fit six mice,” Benoit said. “It’s a great system to work on. That’s why so many questions have been answered about them.”

For the UC study, Polak isolated females and males of the fruit fly species Drosophila melanogaster, which is famous for its enormous red eyes and high reproductive capacity. A single fly can lay 50 eggs per day or as many as 2,000 eggs in her short two-month lifetime.

UC researchers fed females the same diet. But they fed males 30 different diets of yeast and sugars. The flies could eat all they wanted from the agar mixture in the bottom of their glass beaker homes, but the quality of the food varied dramatically from low to high concentrations of proteins, carbohydrates and calories.

 

After 17 days on the strict diet, the males were mated individually and consecutively with two females, which all received the same diet of yeasted cornmeal. By controlling the diet and age of the mated female, researchers tried to limit variation in maternal conditions for the study.

And by mating the males consecutively, researchers wanted to learn about the effect of male mating order and what role diet played in changing the male’s ejaculate.

After the first mating, the male fly was mated 15 minutes later with a second female. Afterward, the females were placed in isolated breeding vials filled with grape agar suitable for laying eggs. After 24 hours, researchers counted their eggs.

After another 24-hour incubation period, the eggs were examined under a microscope to determine how many hatched or contained viable embryos. Unfertilized eggs were removed from consideration. After the first count, researchers waited another 24 hours to give potentially unviable eggs time to develop or hatch but none did.

Polak and Benoit found that embryos from the second mating were more likely to survive as their fathers’ diets improved in nutrition. These effects were less apparent in the first mating. Likewise, embryo mortality was highest for offspring of males that fed on a high-carbohydrate, low-protein diet.

Researchers also found a connection between the male’s body condition and his offspring’s mortality. Males with lower energy reserves (measured in whole-body fatty acids, glucose and protein) were more likely to have fewer surviving offspring.

Females laid roughly the same number of eggs regardless of the male’s diet or mating frequency. But the study suggested that something important in the male’s ejaculate was lost between the first and second pairings.

“The second copulation is where the effects of diet really became stronger,” Polak said. “Emaciated males in poor condition produced embryos with a higher rate of mortality. But only in the second copulation.”

Polak’s study also found a slightly higher incidence of embryo mortality associated with male flies in the first mating that were fed the highest-calorie diet.

“There have been a fair number of studies that suggest male nutrition does affect reproductive capacity,” Benoit said. “But the reduction in viability was a lot smaller than what we saw in the low-quality diet or may have been masked since only a single mating was assessed.”

Polak said the study raises questions about how nutrition might affect successive generations. A 2002 Swedish population study found a correlation between 9-year-old children who had ample access to food and higher rates of diabetes and heart disease among their grandchildren. Meanwhile, children who faced privation from famine at the same age had children and grandchildren with less incidences of heart disease and diabetes.

The study was funded in part by a four-year $882,000 grant from the National Science Foundation.

Now Benoit and Polak are turning their attention to a new study examining the genetic and epigenetic responses of fruit flies that are stressed by parasitic mites.

“The seminal fluid does have a protective role to play for the embryo. You definitely have implications for embryo health and viability. But that’s another chapter,” Polak said.

The researchers also are interested in testing whether parasitic infection could change the quality of male seminal plasma, possibly exerting effects on the embryo as they observed in the diet study.

After spending most of his academic career studying them, Polak has respect for the lowly fruit fly.

“You get a special sort of appreciation for them when you see them in your kitchen courting on a piece of fruit,” he said. “You know a lot about them – and maybe you’re a little less likely to swat them.”

Source:
http://magazine.uc.edu/editors_picks/recent_features/fruitfly.html
Be the first to rate this post


Connie’s comments: Whole foods, exercise, avoidance of toxins and quality supplementation are important for both mother and father to have healthy offspring.

There supplements , AGELOC  family , are also in PDRs, Physician Desk Reference and formulated at right quantity (eye formula for example is best for those with genetic predisposition to eye health issues):

http://www.clubalthea.pxproducts.com

Free wearable and AGELOC Youth for $500 lifetime health coaching from Connie. Email motherhealth@gmail.com

Email Connie to be an independent distributor helping doctors and health care pros with nutrition protocols for preventive medicine.

ageloc_youth_brochureageloc youth 99ageloc r2 black hair 2g3 ageloc yageloc vitality 11

 

 

Predictive genetic testing may upend the insurance market

Predictive genetic testing may upend the insurance market, The Economist writes, as insurers about adverse selection and consumers worry about discrimination.

Consumers can now on their own order genetic tests that inform them of their risk of developing certain diseases. Health tests can gauges customer’s chances of developing diseases like Parkinson’s and Alzheimer’s.

Email motherhealth@gmail.com for DNA EXOME test, gut microbiome test, whole blood panel test,  and anti-oxidant level test.

But, consumers who learn they are at genetic risk of a disease like Alzheimer’s are much more likely to buy long-term care insurance than those who don’t know of such risk, as Harvard researchers have reported.

This, Economist says, creates an imbalance in which people who know they are more likely to need such insurance seek it, and drive up rates. But, on the flip side, it adds that people with such higher risk who disclose it could be subject to higher rates or be excluded from coverage.

“Either way, the scientific advances could well disrupt insurance significantly,” it says.

The Economist notes there is a patchwork of regulations around the world, with the Genetic Information Nondiscrimination Act in the US barring health insurers from using genetic testing results, though other types of insurers may rely on such results.

$25k vs $2.5k health screen with health coaching

You as health consumer must be empowered to know the latest in health screens from EXOME/whole DNA test, gut microbiome test and whole blood panel tests. Together with your doctor, results of these health screens can help clear your path towards keeping your mind and body strong and healthy.

Motherhealth will soon launch an integrated health screens with health coaching where results are emailed to you, your doctor, genetic counselor and other health care team members you identify. The cost is $2500 vs the competitor which cost more than $25000.

The service includes health screen tests (DNA/EXOME, gut microbiome, whole blood)  , nutrition consult and health coaching to guide and motivate you in your journey toward achieving the balance in health, mind and body.

You can also start a journal of notes and symptoms that you feel and experience. Together with your doctor, you can have a clue of what will happen if these health symptoms are not attended. Care for your body now before it is too late.

Many cancer patients have chronic indigestion, migraine, cough, pain and other symptoms that started 5 or 10 years ago.

Nursing care is becoming more expensive in the absence of a long term care insurance.

If your family is not around to help care for you, you need a caregiver 4hrs or 24hrs to care for you during chronic health care crisis.

Search this site for symptoms and health care tips.

ad motherhealth

%d bloggers like this: