How we help slow down aging with seniors with ALS, Parkinson and AD

CNS atrophy leads to muscle atrophy and lack of exercise can facilitate virus and inflammation attacks. With exercise, simple range of motion that seniors can carry will help slow down ALS, Parkinson and Azheimers disease.

We start with whole foods rich in Vitamin C and zinc to fight the virus and inflammation. We do simple stretch , do not over stretch before moving or transferring the patient.

Our seniors are thriving with our care that is compassionate and hands on allowing the seniors to do simple exercises while sitting or on their bed.

Bath soaks: hydrogen peroxide and EPSOM salts

Veggie smoothie: greens, onions, garlic, ginger, turmeric, coconut oil, soaked nuts, lime

Breakfast smoothie: soaked nuts (cashew, almonds, walnut), probiotic, ginger, turmeric, blueberries, banana, avocado, strawberries, amino acid powder and Orgain protein shake

Parasites, virus and cancer are factors that make them wake up in the middle of the night and not get adequate sleep. So we incorporate turmeric, lemon, garlic, ginger, onions, veggies and Vitamin C rich foods in their meals which we made into a smoothie.

Call 408-854-1883 for holistic bay area caregivers.

https://www.youtube.com/results?search_query=ALS+exercises

card mother

What body systems are responsible for energy production?

Skeletal muscle is powered by one important compound; adenosine triphosphate (ATP). The body only stores small amounts of ATP in the muscles so it has to replace and resynthesize this energy compound on an ongoing basis. Understanding how it does this is the key to understanding energy systems.

There are 3 separate energy systems through which the body produces ATP. Describing each of these systems in detail goes beyond the aim of this article. Instead it is intended that the brief outlines provided will assist in describing the role of blood lactate during energy production for exercise, and how this knowledge can be used to help with training for improved endurance performance.

ENERGY SYSTEMS

The ATP-PCr system

This system produces energy during the first 5-8 seconds of exercise using ATP stored in the muscles and through the breakdown of phosphocreatine (PCr). This system can operate with or without the presence of oxygen but since it doesn’t rely on oxygen to work it is said to be anaerobic. When activity continues beyond this period the body relies on other ways to produce ATP.

The Glycolytic System

This system produces ATP through the breakdown of glucose in a series on enzymatic reactions. The end product of glycolysis is pyruvic acid. This either gets funneled through a process called the Kreb’s cycle (slow glycolysis) or gets converted into lactic acid (fast glycolysis). The fast glycolytic system produces energy more quickly than slow glycolysis but the end product of lactic acid can accumulate and is thought to lead to muscular fatigue. The contribution of the fast glycolytic energy system rapidly increases after the first 10 seconds and activity lasting up to 45 seconds is supplied by energy mainly from this system. Anything longer than this and there is a growing reliance on the Oxidative system.

The Oxidative system

This is where pyruvic acid from slow glycolysis is converted into a substance called acetyl coenzyme A rather than lactic acid. This substance is then used to produce ATP by funneling it through the Krebs cycle. As it is broken down it produces ATP but also leads to the production of hydrogen and carbon dioxide. This can lead to the blood becoming more acidic. However, when oxygen is present it combines with the hydrogen molecules in series of reactions known as the electron transport chain to form water thus preventing acidification. This chain, which requires the presence oxygen, also leads to the production of ATP. The Krebs cycle and the electron transport chain also metabolise fat for ATP production but this again requires the presence of oxygen so that the fats can be broken down. More ATP can be liberated from the breakdown of fats but because of the increased oxygen demand exercise intensities must be reduced. This is also the most sustainable way of producing ATP.

It is important to remember that these systems are all constantly working to produce energy for all bodily functions and one system is never working exclusively over the others. When it comes to energy production for exercise one system will play a more dominant role (this will be dictated by the type of activity being performed) but all 3 systems will still be working to provide adequate amounts of ATP.

What is Blood Lactate?

It is through the Glycolytic System that the role and production of blood lactate becomes apparent. Recall the end product of glycolysis is pyruvic acid. When this is converted into lactic acid it quickly dissociates and releases hydrogen ions. The remaining compound then combines with sodium or potassium ions to form a salt called lactate. Far from being a waste product, the formation of lactate allows for the continued metabolism of glucose through glycolysis. As long as the clearance of lactate is matched by its production it becomes an important source of fuel.

Clearance of lactate from the blood can occur either through oxidation within the muscle fibre in which it was produced or it can be transported to other muscle fibres for oxidation. Lactate that is not oxidized in this way diffuses from the exercising muscle into the capillaries and it is transported via the blood to the liver. Lactate can then be converted to pyruvate in the presence of oxygen, which can then be converted into glucose. This glucose can either be metabolized by working muscles (as an additional substrate) or stored in the muscles as glycogen for later use. So lactate should be viewed as a useful form of potential energy. Lactic acid and lactate do not cause fatigue per se.

In fact, it is a common misinterpretation that blood lactate or even lactic acid has a direct negative effect on muscle performance. It is now generally accepted that any decrease in muscle performance associated with blood lactate accumulation is due to an increase in hydrogen ions, leading to an increased acidity of the inter-cellular environment. This acidosis is thought to have an unfavourable effect on muscle contraction, and contributes to a feeling of heavy or ‘jelly’ legs.

The term ‘accumulation’ is therefore the key, as an increased production of hydrogen ions (due to an increase production of lactic acid) will have no detrimental effect if clearance is just as fast. During low intensity exercise blood lactate levels will remain at near resting levels as clearance matches production. As exercise intensity increases there comes a break point where blood lactate levels will start to rise (production starts to exceed clearance). This is often referred to as the lactate threshold (LT). If exercise intensity continues to increase a second and often more obvious increase in lactate accumulation is seen. This is referred to as the lactate turn point (LTP).

How to have healthy blood flow to your heart?

blood flowI believe that a healthy blood flow to the heart starts with clean alkaline blood processed by a healthy liver free from toxins such as drugs, alcohol and toxic medications (narcotics).  Consumption of foods rich in nutrients such as folate, Vitamin C and B and L-arginine amino acid can prevent mitochondrial damage.  Example of foods rich in these nutrients are cage-free eggs, dairy products like cultured yogurtkefir and raw cheeses (choose organic and raw dairy whenever possible) Grass-fed beef or meat and pasture-raised poultry (including turkey and chicken) Liver and organ meats (such as chicken liver pate).

And the most important factors for a healthy heart are deep cleansing breath from calm mind, sleep, stress-free and healthy lifestyle with positive energies from sunshine, massage and grounding (walking barefoot on the beach or ground).

Connie


Sun, Earth and the Human Touch — 3 Key Principles for Healthy Blood Flow

Pollack has also clearly demonstrated there are three natural energies that result in separation of charges that create flow:

1.Sunlight charges up your blood vessels, which increases the flow of blood. When the sun’s rays penetrate your skin, it causes a massive increase of nitric oxide that acts as a vasodilator. As much as 60 percent of your blood can be shunted to the surface of your skin through the action of nitric oxide. This helps absorb solar radiation, which then causes the water in your blood to capture the energy and become structured.

This is a key component for a healthy heart. The ideal is to be exposed to the sun while grounding, meaning walking barefoot. This forms a biological circuit that makes it work even better.

2.Negative ions from the Earth, also known as earthing or grounding. This also charges up your blood vessels, creates a separation of charges, creates more positive ions and allows the blood to flow upward, against gravity.

3.The field effect or touch from another living being, such as laying on of hands.


Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the family of mitochondrial cytopathies, which also include MERRF, and Leber’s hereditary optic neuropathy.

Most people with MELAS have a buildup of lactic acid in their bodies, a condition called lactic acidosis. Increased acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness (fatigue), muscle weakness, loss of bowel control, and difficulty breathing. Less commonly, people with MELAS may experience involuntary muscle spasms (myoclonus), impaired muscle coordination (ataxia), hearing loss, heart and kidney problems, diabetes, epilepsy, and hormonal imbalances.

MELAS is a condition that affects many of the body’s systems, particularly the brain and nervous system (encephalo-) and muscles (myopathy). In most cases, the signs and symptoms of this disorder appear in childhood following a period of normal development.[3]Early symptoms may include muscle weakness and pain, recurrent headaches, loss of appetite, vomiting, and seizures. Most affected individuals experience stroke-like episodes beginning before age 40. These episodes often involve temporary muscle weakness on one side of the body (hemiparesis), altered consciousness, vision abnormalities, seizures, and severe headaches resembling migraines. Repeated stroke-like episodes can progressively damage the brain, leading to vision loss, problems with movement, and a loss of intellectual function (dementia). The stroke-like episodes can be mis-diagnosed as epilepsy by a doctor not aware of the MELAS condition.

Patients are managed according to what areas of the body are affected at a particular time. Enzymesamino acidsantioxidants and vitamins have been used.

Also the following supplements may help:

  • CoQ10 has been helpful for some MELAS patients.[7] Nicotinamide has been used because complex l accepts electrons from NADH and ultimately transfers electrons to CoQ10.
  • Riboflavin has been reported to improve the function of a patient with complex l deficiency and the 3250T-C mutation.[8]
  • The administration of L-arginine during the acute and interictal periods may represent a potential new therapy for this syndrome to reduce brain damage due to impairment of vasodilation in intracerebral arteries due to nitric oxide depletion

Physical inactivity, dopamine, lactate , glucose and aging

aging exerAfter 96 years of age, he has crying spells in the afternoon or early evening hours when our brain hormones are slowing down to ready for sleep.  With less exercise and more time sitting down watching TV and eating every 2 hours, he forgets to remember things as his brain and muscles are not working as it should when he was young.  Whenever I see him, I give him a hug and trains other caregivers to hug him more. He perks up and can do more walking.

Hugging can increase the production of dopamine in your brain, and this can be seen in PET scans of the brain. Dopamine levels are low in people with conditions like Parkinsonism and mood disorders like Depression.

So if you see someone depressed, give him a hug, and bring a little joy to their life.
Dopamine levels are low to those with Alzheimer and Parkinson’s diseases.
Dopamine containing neurons control  voluntary movements. The association with a physiologically reduced glutamate release from frontal and prefrontal cortices, hippocampi and amygdala would induce further decrease of Dopamine release, inducing hypo-activity, gait disturbances and decline of executive functions.

The earlier the impairment of Dopamine system occurs, the fastest the cognitive decline goes.

Hormones and nuerotransmitters dopamine, norepinephrine and epinephrine are responsible for our emotions and affects our memory and muscles causing Alzheimer and Parkinson’s disease.
In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior.
Epinephrine, also called adrenaline, hormone that is secreted mainly by the medulla of the adrenal glands and that functions primarily to increase cardiac output and to raise glucose levels in the blood.
Norepinephrine, also called noradrenaline, substance that is released predominantly from the ends of sympathetic nerve fibers and that acts to increase the force of skeletal muscle contraction and the rate and force of contraction of the heart.

Supplements and Nutrition

Eat happy foods: eggs, colorful whole foods and yams and whole foods/dietary supplements rich in the following nutrients:
Folate, Vitamin B complex, SAM-E,omega 3, digestive enzymes, probiotic, Vitamin C, copper, iron from greens, NAC
Suggested exercises should include walking, dancing , stretching, yoga, meditation, and other body movement.
Remember all the above information assumes that you have a healthy liver. Take care of the laboratory organ of your body, the liver which processes all chemicals, drugs, alcohol and nutrition in your body.
During sleep, your brain is helping the liver detox your body. The lymphatic system which travels opposite your circulatory system is responsible for cleaning your blood.

Lactate and brain

Lactate is considered an important metabolite in the human body, but there has been considerable debate about its roles in brain function. Research in recent years has suggested that lactate from astrocytes may be crucial for supporting axonal function, especially during times of high metabolic demands or hypoglycemia. The astrocyte-neuron lactate transfer shuttle system serves a protective function to ensure a supply of substrates for brain metabolism, and oligodendrocytes appear to also influence availability of lactate. There is increasing evidence for lactate acting as a signaling molecule in the brain to link metabolism, substrate availability, blood flow and neuronal activity.
The brain produces its own lactate from the metabolism of glycogen and tends to export lactate at rest []. Lactate is brought into the brain across the BBB to be used as fuel when plasma lactate is high or plasma glucose is low [].

Muscles and aging

Muscles – 1